SpOT: Spatiotemporal Modeling for 3D Object Tracking

被引:5
|
作者
Stearns, Colton [1 ]
Rempe, Davis [1 ]
Li, Jie [2 ]
Ambrus, Rare [2 ]
Zakharov, Sergey [2 ]
Guizilini, Vitor [2 ]
Yang, Yanchao [1 ]
Guibas, Leonidas J. [1 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
[2] Toyota Res Inst, Los Altos, CA USA
来源
关键词
3D object detection; 3D object tracking; point clouds; LiDAR; Autonomous driving; NuScenes Dataset;
D O I
10.1007/978-3-031-19839-7_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3D multi-object tracking aims to uniquely and consistently identify all mobile entities through time. Despite the rich spatiotemporal information available in this setting, current 3D tracking methods primarily rely on abstracted information and limited history, e.g. single-frame object bounding boxes. In this work, we develop a holistic representation of traffic scenes that leverages both spatial and temporal information of the actors in the scene. Specifically, we reformulate tracking as a spatiotemporal problem by representing tracked objects as sequences of time-stamped points and bounding boxes over a long temporal history. At each time-stamp, we improve the location and motion estimates of our tracked objects through learned refinement over the full sequence of object history. By considering time and space jointly, our representation naturally encodes fundamental physical priors such as object permanence and consistency across time. Our spatiotemporal tracking framework achieves state-of-the-art performance on the Waymo and nuScenes benchmarks.
引用
收藏
页码:639 / 656
页数:18
相关论文
共 50 条
  • [31] Generative Object Detection and Tracking in 3D Range Data
    Kaestner, Ralf
    Maye, Jerome
    Pilat, Yves
    Siegwart, Roland
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 3075 - 3081
  • [32] Global optimal searching for textureless 3D object tracking
    Wang, Guofeng
    Wang, Bin
    Zhong, Fan
    Qin, Xueying
    Chen, Baoquan
    VISUAL COMPUTER, 2015, 31 (6-8): : 979 - 988
  • [33] Tracking bees - A 3D, outdoor small object environment
    Estivill-Castro, V
    Lattin, D
    Suraweera, F
    Vithanage, V
    2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 3, PROCEEDINGS, 2003, : 1021 - 1024
  • [34] 3D object tracking on active stereo vision robot
    Shibata, M
    Honma, T
    7TH INTERNATIONAL WORKSHOP ON ADVANCED MOTION CONTROL, PROCEEDINGS, 2002, : 567 - 572
  • [35] 3D object tracking using a single perspective projection
    Habets, D
    Pollmann, S
    Holdsworth, D
    MEDICAL PHYSICS, 2002, 29 (06) : 1353 - 1353
  • [36] Global optimal searching for textureless 3D object tracking
    Guofeng Wang
    Bin Wang
    Fan Zhong
    Xueying Qin
    Baoquan Chen
    The Visual Computer, 2015, 31 : 979 - 988
  • [37] 3D Object Tracking with Adaptively Weighted Local Bundles
    Li, Jia-Chen
    Zhong, Fan
    Xu, Song-Hua
    Qin, Xue-Ying
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2021, 36 (03) : 555 - 571
  • [38] Spatiotemporal Energy Modeling for Foreground Segmentation in Multiple Object Tracking
    Shao, Jie
    Jia, Zhen
    Li, Zhipeng
    Liu, Fuqiang
    Zhao, Jianwei
    Peng, Pei-Yuan
    2011 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2011,
  • [39] 3D object watermarking by a 3D hidden object
    Kishk, S
    Javidi, B
    OPTICS EXPRESS, 2003, 11 (08): : 874 - 888
  • [40] Joint 3D Tracking of a Deformable Object in Interaction with a Hand
    Tsoli, Aggeliki
    Argyros, Antonis A.
    COMPUTER VISION - ECCV 2018, PT XIV, 2018, 11218 : 504 - 520