SpOT: Spatiotemporal Modeling for 3D Object Tracking

被引:5
|
作者
Stearns, Colton [1 ]
Rempe, Davis [1 ]
Li, Jie [2 ]
Ambrus, Rare [2 ]
Zakharov, Sergey [2 ]
Guizilini, Vitor [2 ]
Yang, Yanchao [1 ]
Guibas, Leonidas J. [1 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
[2] Toyota Res Inst, Los Altos, CA USA
来源
关键词
3D object detection; 3D object tracking; point clouds; LiDAR; Autonomous driving; NuScenes Dataset;
D O I
10.1007/978-3-031-19839-7_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3D multi-object tracking aims to uniquely and consistently identify all mobile entities through time. Despite the rich spatiotemporal information available in this setting, current 3D tracking methods primarily rely on abstracted information and limited history, e.g. single-frame object bounding boxes. In this work, we develop a holistic representation of traffic scenes that leverages both spatial and temporal information of the actors in the scene. Specifically, we reformulate tracking as a spatiotemporal problem by representing tracked objects as sequences of time-stamped points and bounding boxes over a long temporal history. At each time-stamp, we improve the location and motion estimates of our tracked objects through learned refinement over the full sequence of object history. By considering time and space jointly, our representation naturally encodes fundamental physical priors such as object permanence and consistency across time. Our spatiotemporal tracking framework achieves state-of-the-art performance on the Waymo and nuScenes benchmarks.
引用
收藏
页码:639 / 656
页数:18
相关论文
共 50 条
  • [21] Context Matching-Guided Motion Modeling for 3D Point Cloud Object Tracking
    Nie, Jiahao
    Xu, Anqi
    Bao, Zhengyi
    He, Zhiwei
    Lv, Xudong
    Gao, Mingyu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (03) : 2289 - 2300
  • [22] An approach for tracking the 3D object pose using two object points
    Vuppala, Sai Krishna
    Graeser, Axel
    COMPUTER VISION SYSTEMS, PROCEEDINGS, 2008, 5008 : 261 - 270
  • [23] Extended Keyframe Detection with Stable Tracking for Multiple 3D Object Tracking
    Park, Youngmin
    Lepetit, Vincent
    Woo, Woontack
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2011, 17 (11) : 1728 - 1735
  • [24] Monocular Quasi-Dense 3D Object Tracking
    Hu, Hou-Ning
    Yang, Yung-Hsu
    Fischer, Tobias
    Darrell, Trevor
    Yu, Fisher
    Sun, Min
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (02) : 1992 - 2008
  • [25] 3D Object Detection and Tracking Based on Streaming Data
    Guo, Xusen
    Gu, Jianfeng
    Guo, Silu
    Xu, Zixiao
    Yang, Chengzhang
    Liu, Shanghua
    Cheng, Long
    Huang, Kai
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 8376 - 8382
  • [26] A Fast Unified System for 3D Object Detection and Tracking
    Heitzinger, Thomas
    Kampel, Martin
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 16998 - 17008
  • [27] Mutual information-based 3D object tracking
    Panin, Giorgio
    Knoll, Alois
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2008, 78 (01) : 107 - 118
  • [28] 3D Object Tracking with Adaptively Weighted Local Bundles
    Jia-Chen Li
    Fan Zhong
    Song-Hua Xu
    Xue-Ying Qin
    Journal of Computer Science and Technology, 2021, 36 : 555 - 571
  • [29] Tracking a rigid object in 3D from a single camera
    Wang, H
    Li, Z
    AUTOMATIC INSPECTION AND NOVEL INSTRUMENTATION, 1997, 3185 : 78 - 89
  • [30] Bioinspired point cloud representation: 3D object tracking
    Sergio Orts-Escolano
    Jose Garcia-Rodriguez
    Miguel Cazorla
    Vicente Morell
    Jorge Azorin
    Marcelo Saval
    Alberto Garcia-Garcia
    Victor Villena
    Neural Computing and Applications, 2018, 29 : 663 - 672