SpOT: Spatiotemporal Modeling for 3D Object Tracking

被引:5
|
作者
Stearns, Colton [1 ]
Rempe, Davis [1 ]
Li, Jie [2 ]
Ambrus, Rare [2 ]
Zakharov, Sergey [2 ]
Guizilini, Vitor [2 ]
Yang, Yanchao [1 ]
Guibas, Leonidas J. [1 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
[2] Toyota Res Inst, Los Altos, CA USA
来源
关键词
3D object detection; 3D object tracking; point clouds; LiDAR; Autonomous driving; NuScenes Dataset;
D O I
10.1007/978-3-031-19839-7_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3D multi-object tracking aims to uniquely and consistently identify all mobile entities through time. Despite the rich spatiotemporal information available in this setting, current 3D tracking methods primarily rely on abstracted information and limited history, e.g. single-frame object bounding boxes. In this work, we develop a holistic representation of traffic scenes that leverages both spatial and temporal information of the actors in the scene. Specifically, we reformulate tracking as a spatiotemporal problem by representing tracked objects as sequences of time-stamped points and bounding boxes over a long temporal history. At each time-stamp, we improve the location and motion estimates of our tracked objects through learned refinement over the full sequence of object history. By considering time and space jointly, our representation naturally encodes fundamental physical priors such as object permanence and consistency across time. Our spatiotemporal tracking framework achieves state-of-the-art performance on the Waymo and nuScenes benchmarks.
引用
收藏
页码:639 / 656
页数:18
相关论文
共 50 条
  • [1] Manipulator and object tracking for in-hand 3D object modeling
    Krainin, Michael
    Henry, Peter
    Ren, Xiaofeng
    Fox, Dieter
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2011, 30 (11): : 1311 - 1327
  • [2] Modeling Continuous Motion for 3D Point Cloud Object Tracking
    Luo, Zhipeng
    Zhang, Gongjie
    Zhou, Changqing
    Wu, Zhonghua
    Tao, Qingyi
    Lu, Lewei
    Lu, Shijian
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 5, 2024, : 4026 - 4034
  • [3] Exploit Spatiotemporal Contextual Information for 3D Single Object Tracking via Memory Networks
    Ra, Jongwon
    Wang, MengMeng
    Mei, Jianbiao
    Liu, Shanqi
    Yang, Yu
    Liu, Yong
    2024 INTERNATIONAL CONFERENCE IN 3D VISION, 3DV 2024, 2024, : 842 - 851
  • [4] 3D Object Tracking for Rough Models
    Song, Xiuqiang
    Xie, Weijian
    Li, Jiachen
    Wang, Nan
    Zhong, Fan
    Zhang, Guofeng
    Qin, Xueying
    COMPUTER GRAPHICS FORUM, 2023, 42 (07)
  • [5] Robust statistics for 3D object tracking
    Preisig, Peter
    Kragic, Danica
    2006 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-10, 2006, : 2403 - +
  • [6] A Framework for 3D Object Identification and Tracking
    Chliveros, Georgios
    Figueiredo, Rui P.
    Moreno, Plinio
    Pateraki, Maria
    Bernardino, Alexandre
    Santos-Victor, Jose
    Trahanias, Panos
    PROCEEDINGS OF THE 2014 9TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, THEORY AND APPLICATIONS (VISAPP 2014), VOL 3, 2014, : 672 - 677
  • [7] OccluBEV: Occlusion Aware Spatiotemporal Modeling for Multi-view 3D Object Detection
    Wen, Ziteng
    Xu, Hai
    Liu, Chenyu
    Guo, Tao
    Hu, Jinshui
    He, Xuming
    Wang, Fengren
    Lou, Shun
    Fan, Haibo
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 4074 - 4083
  • [8] Decomposing the spatiotemporal signature in dynamic 3D object recognition
    Wang, Ying
    Zhang, Kan
    JOURNAL OF VISION, 2010, 10 (10):
  • [9] Wildlife 3D multi-object tracking
    Klasen, Morris
    Steinhage, Volker
    ECOLOGICAL INFORMATICS, 2022, 71
  • [10] Monocular 3D Pose Tracking of a Specular Object
    Oumer, Nassir W.
    PROCEEDINGS OF THE 2014 9TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, THEORY AND APPLICATIONS (VISAPP 2014), VOL 3, 2014, : 458 - 465