Correlations for pairs of periodic trajectories for open billiards

被引:11
|
作者
Petkov, Vesselin [1 ]
Stoyanov, Luchezar [2 ]
机构
[1] Univ Bordeaux 1, Inst Math Bordeaux, F-33405 Talence, France
[2] Univ Western Australia, Sch Math & Stat, Perth, WA 6009, Australia
关键词
ORBITS; BOUNDS; DECAY; FLOWS;
D O I
10.1088/0951-7715/22/11/005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove two asymptotic estimates for pairs of closed trajectories for open billiards similar to those established by Pollicott and Sharp ( 2006 Invent. Math. 163 10-24) for closed geodesics on negatively curved compact surfaces. The first of these estimates holds for general open billiards in any dimension. The more intricate second estimate is established for open billiards satisfying the so-called Dolgopyat type estimates. This class of billiards includes all open billiards in the plane and open billiards in R-N (N >= 3) satisfying some additional conditions.
引用
收藏
页码:2657 / 2679
页数:23
相关论文
共 50 条
  • [1] Counting Periodic Trajectories of Finsler Billiards
    Blagojevi, Pavle V. M.
    Harrison, Michael
    Tabachnikov, Serge
    Ziegler, Guenter M.
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
  • [2] PERIODIC TRAJECTORIES IN RIGHT-TRIANGLE BILLIARDS
    CIPRA, B
    HANSON, RM
    KOLAN, A
    [J]. PHYSICAL REVIEW E, 1995, 52 (02): : 2066 - 2071
  • [3] Classification of symmetric periodic trajectories in ellipsoidal billiards
    Casas, Pablo S.
    Ramirez-Ros, Rafael
    [J]. CHAOS, 2012, 22 (02)
  • [4] VARIATIONAL PRINCIPLE FOR PERIODIC TRAJECTORIES OF HYPERBOLIC BILLIARDS
    BUNIMOVICH, LA
    [J]. CHAOS, 1995, 5 (02) : 349 - 355
  • [5] Conductance of open quantum billiards and classical trajectories
    Nazmitdinov, RG
    Pichugin, KN
    Rotter, I
    Seba, P
    [J]. PHYSICAL REVIEW B, 2002, 66 (08) : 853221 - 8532213
  • [6] Robust asymptotic tracking of periodic trajectories in elliptical billiards
    Galeani, S.
    Menini, L.
    Potini, A.
    Tornambe, A.
    [J]. PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 919 - 924
  • [7] PERIODIC TRAJECTORIES IN 3-DIMENSIONAL BIRKHOFF BILLIARDS
    BABENKO, IK
    [J]. MATHEMATICS OF THE USSR-SBORNIK, 1992, 71 (01): : 1 - 13
  • [8] Periodic trajectories in 3-dimensional convex billiards
    Farber, M
    Tabachnikov, S
    [J]. MANUSCRIPTA MATHEMATICA, 2002, 108 (04) : 431 - 437
  • [9] Periodic trajectories in 3-dimensional convex billiards
    Michael Farber
    Serge Tabachnikov
    [J]. manuscripta mathematica, 2002, 108 : 431 - 437
  • [10] Asymptotic tracking of periodic trajectories for a particle in an elliptical billiards
    Galeani, S.
    Menini, L.
    Potini, A.
    Tornambe, A.
    [J]. 2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 1882 - 1887