VARIATIONAL PRINCIPLE FOR PERIODIC TRAJECTORIES OF HYPERBOLIC BILLIARDS

被引:15
|
作者
BUNIMOVICH, LA [1 ]
机构
[1] GEORGIA INST TECHNOL,CTR DYNAM SYST & NONLINEAR STUDIES,ATLANTA,GA 30332
关键词
D O I
10.1063/1.166105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove for some classes of hyperbolic billiards that the action functional has only one local minimum or only one local maximum for any finite admissible sequence of regular components of the boundary. This result suggests an effective algorithm for the search of all periodic trajectories of these billiards. © 1995 American Institute of Physics.
引用
收藏
页码:349 / 355
页数:7
相关论文
共 50 条
  • [2] Counting Periodic Trajectories of Finsler Billiards
    Blagojevi, Pavle V. M.
    Harrison, Michael
    Tabachnikov, Serge
    Ziegler, Guenter M.
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
  • [3] PERIODIC TRAJECTORIES IN RIGHT-TRIANGLE BILLIARDS
    CIPRA, B
    HANSON, RM
    KOLAN, A
    [J]. PHYSICAL REVIEW E, 1995, 52 (02): : 2066 - 2071
  • [4] Classification of symmetric periodic trajectories in ellipsoidal billiards
    Casas, Pablo S.
    Ramirez-Ros, Rafael
    [J]. CHAOS, 2012, 22 (02)
  • [5] Correlations for pairs of periodic trajectories for open billiards
    Petkov, Vesselin
    Stoyanov, Luchezar
    [J]. NONLINEARITY, 2009, 22 (11) : 2657 - 2679
  • [6] Variational principle for the determination of unstable periodic orbits and instanton trajectories at saddle points
    Junginger, Andrej
    Main, Joerg
    Wunner, Guenter
    Hernandez, Rigoberto
    [J]. PHYSICAL REVIEW A, 2017, 95 (03)
  • [7] Robust asymptotic tracking of periodic trajectories in elliptical billiards
    Galeani, S.
    Menini, L.
    Potini, A.
    Tornambe, A.
    [J]. PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 919 - 924
  • [8] PERIODIC TRAJECTORIES IN 3-DIMENSIONAL BIRKHOFF BILLIARDS
    BABENKO, IK
    [J]. MATHEMATICS OF THE USSR-SBORNIK, 1992, 71 (01): : 1 - 13
  • [9] Periodic trajectories in 3-dimensional convex billiards
    Farber, M
    Tabachnikov, S
    [J]. MANUSCRIPTA MATHEMATICA, 2002, 108 (04) : 431 - 437
  • [10] Periodic trajectories in 3-dimensional convex billiards
    Michael Farber
    Serge Tabachnikov
    [J]. manuscripta mathematica, 2002, 108 : 431 - 437