Robust asymptotic tracking of periodic trajectories in elliptical billiards

被引:0
|
作者
Galeani, S. [1 ]
Menini, L. [1 ]
Potini, A. [1 ]
Tornambe, A. [1 ]
机构
[1] Univ Roma Tor Vergata, Dip Informat Sist & Prod, I-00133 Rome, Italy
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An infinitely rigid mass subject to friction, with mass and linear damping factor being in general not known exactly, is considered, moving on a planar region delimited by a rigid elliptical barrier (elliptical billiards) under the action of proper control forces. The robust tracking control problem for a class of periodic trajectories, involving nonsmooth impacts between the mass and the barrier at fixed times is stated and solved by means of a controller based on the Internal Model Principle and whose state is subject to discontinuities.
引用
收藏
页码:919 / 924
页数:6
相关论文
共 50 条
  • [1] Asymptotic tracking of periodic trajectories for a particle in an elliptical billiards
    Galeani, S.
    Menini, L.
    Potini, A.
    Tornambe, A.
    [J]. 2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 1882 - 1887
  • [2] Trajectory tracking for a particle in elliptical billiards
    Galeani, S.
    Menini, L.
    Potini, A.
    Tornambe, A.
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2008, 81 (02) : 189 - 213
  • [3] Counting Periodic Trajectories of Finsler Billiards
    Blagojevi, Pavle V. M.
    Harrison, Michael
    Tabachnikov, Serge
    Ziegler, Guenter M.
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
  • [4] PERIODIC TRAJECTORIES IN RIGHT-TRIANGLE BILLIARDS
    CIPRA, B
    HANSON, RM
    KOLAN, A
    [J]. PHYSICAL REVIEW E, 1995, 52 (02): : 2066 - 2071
  • [5] Classification of symmetric periodic trajectories in ellipsoidal billiards
    Casas, Pablo S.
    Ramirez-Ros, Rafael
    [J]. CHAOS, 2012, 22 (02)
  • [6] Correlations for pairs of periodic trajectories for open billiards
    Petkov, Vesselin
    Stoyanov, Luchezar
    [J]. NONLINEARITY, 2009, 22 (11) : 2657 - 2679
  • [7] VARIATIONAL PRINCIPLE FOR PERIODIC TRAJECTORIES OF HYPERBOLIC BILLIARDS
    BUNIMOVICH, LA
    [J]. CHAOS, 1995, 5 (02) : 349 - 355
  • [8] PERIODIC TRAJECTORIES IN 3-DIMENSIONAL BIRKHOFF BILLIARDS
    BABENKO, IK
    [J]. MATHEMATICS OF THE USSR-SBORNIK, 1992, 71 (01): : 1 - 13
  • [9] Periodic trajectories in 3-dimensional convex billiards
    Farber, M
    Tabachnikov, S
    [J]. MANUSCRIPTA MATHEMATICA, 2002, 108 (04) : 431 - 437
  • [10] Periodic trajectories in 3-dimensional convex billiards
    Michael Farber
    Serge Tabachnikov
    [J]. manuscripta mathematica, 2002, 108 : 431 - 437