Correlations for pairs of periodic trajectories for open billiards

被引:11
|
作者
Petkov, Vesselin [1 ]
Stoyanov, Luchezar [2 ]
机构
[1] Univ Bordeaux 1, Inst Math Bordeaux, F-33405 Talence, France
[2] Univ Western Australia, Sch Math & Stat, Perth, WA 6009, Australia
关键词
ORBITS; BOUNDS; DECAY; FLOWS;
D O I
10.1088/0951-7715/22/11/005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove two asymptotic estimates for pairs of closed trajectories for open billiards similar to those established by Pollicott and Sharp ( 2006 Invent. Math. 163 10-24) for closed geodesics on negatively curved compact surfaces. The first of these estimates holds for general open billiards in any dimension. The more intricate second estimate is established for open billiards satisfying the so-called Dolgopyat type estimates. This class of billiards includes all open billiards in the plane and open billiards in R-N (N >= 3) satisfying some additional conditions.
引用
收藏
页码:2657 / 2679
页数:23
相关论文
共 50 条
  • [41] Scarcity of Periodic Orbits in Outer Billiards
    Alexander Tumanov
    [J]. The Journal of Geometric Analysis, 2020, 30 : 2479 - 2490
  • [42] THE TOPOLOGIC STUDY OF THE GEOMETRIC TRAJECTORIES IN THE MATHEMATICAL BILLIARDS
    Stan, Gabriel
    [J]. JOURNAL OF SCIENCE AND ARTS, 2008, (01): : 111 - 115
  • [43] EXISTENCE OF UNBOUNDED OSCILLATING TRAJECTORIES IN A PROBLEM OF BILLIARDS
    LEONTOVICH, AM
    [J]. DOKLADY AKADEMII NAUK SSSR, 1962, 145 (03): : 523 - &
  • [44] On the Existence of Fagnano Trajectories in Convex Polygonal Billiards
    Deniz, A.
    Ratiu, A. V.
    [J]. REGULAR & CHAOTIC DYNAMICS, 2009, 14 (02): : 312 - 322
  • [45] Generic properties of open billiards
    Lopes, A
    Mauldin, RD
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 205 (01) : 251 - 258
  • [46] Statistics of resonances in open billiards
    Ishio, H
    [J]. PHYSICA SCRIPTA, 2001, T90 : 60 - 63
  • [47] Effective coupling for open billiards
    Pichugin, K
    Schanz, H
    Seba, P
    [J]. PHYSICAL REVIEW E, 2001, 64 (05):
  • [48] Periodic orbits of generic oval billiards
    Dias Carneiro, M. J.
    Oliffson Kamphorst, S.
    Pinto-de-Carvalho, S.
    [J]. NONLINEARITY, 2007, 20 (10) : 2453 - 2462
  • [49] Symmetric periodic orbits in symmetric billiards
    Ferreira, Geraldo Cesar Goncalves
    Kamphorst, Sylvie Oliffson
    Pinto-de-Carvalho, Sonia
    [J]. NONLINEARITY, 2024, 37 (01)
  • [50] Scarcity of Periodic Orbits in Outer Billiards
    Tumanov, Alexander
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (03) : 2479 - 2490