Model-based analysis of tiling-arrays for ChIP-chip

被引:327
|
作者
Johnson, W. Evan
Li, Wei
Meyer, Clifford A.
Gottardo, Raphael
Carroll, Jason S.
Brown, Myles
Liu, X. Shirley
机构
[1] Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USA
[2] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02115 USA
[3] Harvard Univ, Sch Med, Boston, MA 02115 USA
[4] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[5] Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
关键词
functional genomics; genome tiling microarrays; model-based probe analysis; transcription regulation;
D O I
10.1073/pnas.0601180103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a fast and powerful analysis algorithm, titled Modelbased Analysis of Tiling-arrays (MAT), to reliably detect regions enriched by transcription factor chromatin immunoprecipitation (ChIP) on Affymetrix tiling arrays (ChIP-chip). MAT models the baseline probe behavior by considering probe sequence and copy number on each array. It standardizes the probe value through the probe model, eliminating the need for sample normalization. MAT uses an innovative function to score regions for ChIP enrichment, which allows robust P value and false discovery rate calculations. MAT can detect ChIP regions from a single ChIP sample, multiple ChIP samples, or multiple ChIP samples with controls with increasing accuracy. The single-array ChIP region detection feature minimizes the time and monetary costs for laboratories newly adopting ChIP-chip to test their protocols and antibodies and allows established ChIP-chip laboratories to identify samples with questionable quality that might contaminate their data. MAT is developed in open-source Python and is available at http://chip. dfci.harvard.edu/-wli/MAT. The general framework presented here can be extended to other oligonucleoticle microarrays and tiling array platforms.
引用
收藏
页码:12457 / 12462
页数:6
相关论文
共 50 条
  • [1] Unsupervised Classification for Tiling Arrays: ChIP-chip and Transcriptome
    Berard, Caroline
    Martin-Magniette, Marie-Laure
    Brunaud, Veronique
    Aubourg, Sebastien
    Robin, Stephane
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2011, 10 (01)
  • [2] NTAP: for NimbleGen tiling array ChIP-chip data analysis
    He, Kun
    Li, Xueyong
    Zhou, Junli
    Deng, Xing-Wang
    Zhao, Hongyu
    Luo, Jingchu
    BIOINFORMATICS, 2009, 25 (14) : 1838 - 1840
  • [3] Poisson approximation for significance in genome-wide ChIP-chip tiling arrays
    Zhang, Yu
    BIOINFORMATICS, 2008, 24 (24) : 2825 - 2831
  • [4] CARPET: a web-based package for the analysis of ChIP-chip and expression tiling data
    Cesaroni, Matteo
    Cittaro, Davide
    Brozzi, Alessandro
    Pelicci, Pier Giuseppe
    Luzi, Lucilla
    BIOINFORMATICS, 2008, 24 (24) : 2918 - 2920
  • [5] Starr: Simple Tiling ARRay analysis of Affymetrix ChIP-chip data
    Benedikt Zacher
    Pei Fen Kuan
    Achim Tresch
    BMC Bioinformatics, 11
  • [6] Starr: Simple Tiling ARRay analysis of Affymetrix ChIP-chip data
    Zacher, Benedikt
    Kuan, Pei Fen
    Tresch, Achim
    BMC BIOINFORMATICS, 2010, 11
  • [7] ChIP-chip: Data, model, and analysis
    Zheng, Ming
    Barrera, Leah O.
    Ren, Bing
    Wu, Ying Nian
    BIOMETRICS, 2007, 63 (03) : 787 - 796
  • [8] A hidden Ising model for ChIP-chip data analysis
    Mo, Qianxing
    Liang, Faming
    BIOINFORMATICS, 2010, 26 (06) : 777 - 783
  • [9] Improved ChIP-chip analysis by a mixture model approach
    Sun, Wei
    Buck, Michael J.
    Patel, Mukund
    Davis, Ian J.
    BMC BIOINFORMATICS, 2009, 10
  • [10] Improved ChIP-chip analysis by a mixture model approach
    Wei Sun
    Michael J Buck
    Mukund Patel
    Ian J Davis
    BMC Bioinformatics, 10