Sharp Bounds on the Signless Laplacian Spread of Graphs

被引:0
|
作者
Li, Dong [1 ]
Liu, Huiqing [1 ]
Zhang, Shunzhe [1 ]
机构
[1] Hubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Hubei, Peoples R China
关键词
Signless Laplacian spread; k-degree; Independence number; EIGENVALUES; ENERGY;
D O I
10.1007/s41980-018-0181-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected graph of order n. The signless Laplacian spread of G is defined as SQ(G) = q1(G) - qn(G), where q1(G) and qn(G) are the maximum and minimum eigenvalues of the signless Laplacian matrix of G, respectively. In this paper, we present some sharp lower bounds for SQ(G) and SQ(G) + SQ(Gc) in terms of the k- degree and the independence number, respectively.
引用
收藏
页码:1011 / 1020
页数:10
相关论文
共 50 条
  • [31] The signless Laplacian spread
    Liu, Muhuo
    Liu, Bolian
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (2-3) : 505 - 514
  • [32] Sharp upper bounds on the spectral radius of the signless Laplacian matrix of a graph
    Maden, A. Dilek
    Das, Kinkar Ch.
    Cevik, A. Sinan
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (10) : 5025 - 5032
  • [33] ON THE SIGNLESS LAPLACIAN AND NORMALIZED SIGNLESS LAPLACIAN SPREADS OF GRAPHS
    Milovanovic, Emina
    Altindag, Serife Burcu Bozkurt
    Matejic, Marjan
    Milovanovic, Igor
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2023, 73 (02) : 499 - 511
  • [34] On the signless Laplacian and normalized signless Laplacian spreads of graphs
    Emina Milovanović
    Şerife Burcu Bozkurt Altindağ
    Marjan Matejić
    Igor Milovanović
    Czechoslovak Mathematical Journal, 2023, 73 : 499 - 511
  • [35] Sharp bounds for the signless Laplacian spectral radius in terms of clique number
    He, Bian
    Jin, Ya-Lei
    Zhang, Xiao-Dong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (10) : 3851 - 3861
  • [36] Sharp bounds for ordinary and signless Laplacian spectral radii of uniform hypergraphs
    Lin, Hongying
    Mo, Biao
    Zhou, Bo
    Weng, Weiming
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 285 : 217 - 227
  • [37] EIGENVALUE BOUNDS FOR THE SIGNLESS LAPLACIAN
    Cvetkovic, Dragos
    Rowlinson, Peter
    Simic, Slobodan
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2007, 81 (95): : 11 - 27
  • [38] Bounds for the signless Laplacian energy
    Abreu, Nair
    Cardoso, Domingos M.
    Gutman, Ivan
    Martins, Enide A.
    Robbiano, Maria
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) : 2365 - 2374
  • [39] Upper Bounds on the (Signless Laplacian) Spectral Radius of Irregular Weighted Graphs
    Shuiqun Xie
    Xiaodan Chen
    Xiuyu Li
    Xiaoqian Liu
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 2063 - 2080
  • [40] A Note on the Signless Laplacian and Distance Signless Laplacian Eigenvalues of Graphs
    Fenglei TIAN
    Xiaoming LI
    Jianling ROU
    JournalofMathematicalResearchwithApplications, 2014, 34 (06) : 647 - 654