On a Nonlocal Fractional p(.,.)-Laplacian Problem with Competing Nonlinearities

被引:35
|
作者
Ali, K. B. [1 ,2 ]
Hsini, M. [1 ,2 ]
Kefi, K. [2 ,3 ]
Chung, N. T. [4 ]
机构
[1] Jazan Tech Coll, POB 241, Jazan 45952, Saudi Arabia
[2] Fac Sci Tunis, Dept Math, Tunis, Tunisia
[3] Northern Border Univ, Community Coll Rafha, Rafha, Saudi Arabia
[4] Quang Binh Univ, Dept Math, 312 Ly Thuong Kiet, Dong Hoi, Quang Binh, Vietnam
关键词
p(; )-Fractional Laplacian; Kirchhoff type problems; Variable exponents; Variational methods; SPACES;
D O I
10.1007/s11785-018-00885-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study the existence of nontrivial weak solutions for the problem {M(integral Omega x Omega vertical bar u(x)-u(y)vertical bar(p(x,y))/p(x,y)vertical bar x-y vertical bar(N)+p(x,y)s dxdy) (Delta)(p(x,.))(s) u(x) = lambda f (x, u) - vertical bar u(x)vertical bar(q(x)-2)u(x) in Omega, u = 0 in partial derivative Omega, where Omega subset of R-N, N >= 2 is a bounded smooth domain, M and f are two continuous functions and (Delta)(p(.,.))(s) is the fractional p(.,.)-Laplacian while lambda is a positive parameter and 0 < s < 1. Using variational techniques combined with the theory of the generalized Lebesgue Sobolev spaces, we prove some existence and multiplicity results for the problem in an appropriate space of functions.
引用
收藏
页码:1377 / 1399
页数:23
相关论文
共 50 条
  • [41] A system of equations involving the fractional p-Laplacian and doubly critical nonlinearities
    Bhakta, Mousomi
    Perera, Kanishka
    Firoj, S. K.
    ADVANCED NONLINEAR STUDIES, 2023, 23 (01)
  • [42] ON AN EIGENVALUE PROBLEM INVOLVING THE FRACTIONAL (s, p)-LAPLACIAN
    Farcaseanu, Maria
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (01) : 94 - 103
  • [43] The Cauchy problem for a parabolic p-Laplacian equation with combined nonlinearities
    Lu, Heqian
    Zhang, Zhengce
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (02)
  • [44] An eigenvalue Dirichlet problem involving the p-Laplacian with discontinuous nonlinearities
    Bonanno, G
    Giovannelli, N
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 308 (02) : 596 - 604
  • [45] The interaction of dark solitons with competing nonlocal cubic nonlinearities
    Chen W.
    Shen M.
    Kong Q.
    Wang Q.
    Journal of Optics (India), 2015, 44 (03): : 271 - 280
  • [46] Bright Solitons in Liquid Crystals with Competing Nonlocal Nonlinearities
    Pu Shao-zhi
    Li Ying-jia
    Cong Wen-bo
    Zhang Liu-yang
    ACTA PHOTONICA SINICA, 2019, 48 (10)
  • [47] Anomalous interaction of nonlocal solitons in media with competing nonlinearities
    Esbensen, B. K.
    Bache, M.
    Bang, O.
    Krolikowski, W.
    PHYSICAL REVIEW A, 2012, 86 (03):
  • [48] Nonlocal Optical Solitons in Loss Media with Competing Nonlinearities
    Du, Mingxin
    Pu, Shaozhi
    Zhang, Meng
    Sun, Ying
    Wang, Xiaomeng
    ACTA PHOTONICA SINICA, 2024, 53 (09)
  • [49] Generation of multiple solitons using competing nonlocal nonlinearities
    Jisha, Chandroth P.
    Beeckman, Jeroen
    Van Acker, Frederik
    Neyts, Kristiaan
    Nolte, Stefan
    Alberucci, Alessandro
    OPTICS LETTERS, 2019, 44 (05) : 1162 - 1165
  • [50] Dark and singular optical solitons with competing nonlocal nonlinearities
    Zhou, Qin
    Liu, Lan
    Zhang, Huijuan
    Mirzazadeh, Mohammad
    Bhrawy, Ali H.
    Zerrad, Essaid
    Moshokoa, Seithuti
    Biswas, Anjan
    OPTICA APPLICATA, 2016, 46 (01) : 79 - 86