On a Nonlocal Fractional p(.,.)-Laplacian Problem with Competing Nonlinearities

被引:35
|
作者
Ali, K. B. [1 ,2 ]
Hsini, M. [1 ,2 ]
Kefi, K. [2 ,3 ]
Chung, N. T. [4 ]
机构
[1] Jazan Tech Coll, POB 241, Jazan 45952, Saudi Arabia
[2] Fac Sci Tunis, Dept Math, Tunis, Tunisia
[3] Northern Border Univ, Community Coll Rafha, Rafha, Saudi Arabia
[4] Quang Binh Univ, Dept Math, 312 Ly Thuong Kiet, Dong Hoi, Quang Binh, Vietnam
关键词
p(; )-Fractional Laplacian; Kirchhoff type problems; Variable exponents; Variational methods; SPACES;
D O I
10.1007/s11785-018-00885-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study the existence of nontrivial weak solutions for the problem {M(integral Omega x Omega vertical bar u(x)-u(y)vertical bar(p(x,y))/p(x,y)vertical bar x-y vertical bar(N)+p(x,y)s dxdy) (Delta)(p(x,.))(s) u(x) = lambda f (x, u) - vertical bar u(x)vertical bar(q(x)-2)u(x) in Omega, u = 0 in partial derivative Omega, where Omega subset of R-N, N >= 2 is a bounded smooth domain, M and f are two continuous functions and (Delta)(p(.,.))(s) is the fractional p(.,.)-Laplacian while lambda is a positive parameter and 0 < s < 1. Using variational techniques combined with the theory of the generalized Lebesgue Sobolev spaces, we prove some existence and multiplicity results for the problem in an appropriate space of functions.
引用
收藏
页码:1377 / 1399
页数:23
相关论文
共 50 条
  • [31] Cauchy problem of a nonlocal p-Laplacian evolution equation with nonlocal convection
    Sun, Jiebao
    Li, Jing
    Liu, Qiang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 : 691 - 702
  • [32] ON COMPETING (p, q )- LAPLACIAN DIRICHLET PROBLEM WITH UNBOUNDED WEIGHT
    Diblik, Josef
    Galewski, Marek
    Kossowski, Igor
    Motreanu, Dumitru
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2025, 38 (1-2) : 23 - 42
  • [33] Dirichlet problem for a nonlocal p-Laplacian elliptic equation
    Todorov, Todor D.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (06) : 1261 - 1274
  • [34] A Study of p-Laplacian Nonlocal Boundary Value Problem Involving Generalized Fractional Derivatives in Banach Spaces
    Alghanmi, Madeaha
    MATHEMATICS, 2025, 13 (01)
  • [35] Three solutions for a fractional p-Laplacian problem
    Weiqiang Zhang
    Jiabin Zuo
    Peihao Zhao
    Journal of Pseudo-Differential Operators and Applications, 2022, 13
  • [36] On an eigenvalue problem involving the fractional (s, p)-Laplacian
    Maria Fărcăşeanu
    Fractional Calculus and Applied Analysis, 2018, 21 : 94 - 103
  • [37] The Obstacle Problem at Zero for the Fractional p-Laplacian
    Silvia Frassu
    Eugénio M. Rocha
    Vasile Staicu
    Set-Valued and Variational Analysis, 2022, 30 : 207 - 231
  • [38] The Brezis–Nirenberg problem for the fractional p-Laplacian
    Sunra Mosconi
    Kanishka Perera
    Marco Squassina
    Yang Yang
    Calculus of Variations and Partial Differential Equations, 2016, 55
  • [39] Three solutions for a fractional p-Laplacian problem
    Zhang, Weiqiang
    Zuo, Jiabin
    Zhao, Peihao
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2022, 13 (04)
  • [40] The Obstacle Problem at Zero for the Fractional p-Laplacian
    Frassu, Silvia
    Rocha, Eugenio M.
    Staicu, Vasile
    SET-VALUED AND VARIATIONAL ANALYSIS, 2022, 30 (01) : 207 - 231