On a Nonlocal Fractional p(.,.)-Laplacian Problem with Competing Nonlinearities

被引:35
|
作者
Ali, K. B. [1 ,2 ]
Hsini, M. [1 ,2 ]
Kefi, K. [2 ,3 ]
Chung, N. T. [4 ]
机构
[1] Jazan Tech Coll, POB 241, Jazan 45952, Saudi Arabia
[2] Fac Sci Tunis, Dept Math, Tunis, Tunisia
[3] Northern Border Univ, Community Coll Rafha, Rafha, Saudi Arabia
[4] Quang Binh Univ, Dept Math, 312 Ly Thuong Kiet, Dong Hoi, Quang Binh, Vietnam
关键词
p(; )-Fractional Laplacian; Kirchhoff type problems; Variable exponents; Variational methods; SPACES;
D O I
10.1007/s11785-018-00885-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study the existence of nontrivial weak solutions for the problem {M(integral Omega x Omega vertical bar u(x)-u(y)vertical bar(p(x,y))/p(x,y)vertical bar x-y vertical bar(N)+p(x,y)s dxdy) (Delta)(p(x,.))(s) u(x) = lambda f (x, u) - vertical bar u(x)vertical bar(q(x)-2)u(x) in Omega, u = 0 in partial derivative Omega, where Omega subset of R-N, N >= 2 is a bounded smooth domain, M and f are two continuous functions and (Delta)(p(.,.))(s) is the fractional p(.,.)-Laplacian while lambda is a positive parameter and 0 < s < 1. Using variational techniques combined with the theory of the generalized Lebesgue Sobolev spaces, we prove some existence and multiplicity results for the problem in an appropriate space of functions.
引用
收藏
页码:1377 / 1399
页数:23
相关论文
共 50 条
  • [21] The fractional p(.,.)-Neumann boundary conditions for the nonlocal p(.,.)-Laplacian operator
    Irzi, Nawal
    Kefi, Khaled
    APPLICABLE ANALYSIS, 2023, 102 (03) : 839 - 851
  • [22] FRACTIONAL p-SUB-LAPLACIAN OPERATOR PROBLEM WITH CONCAVE-CONVEX NONLINEARITIES ON HOMOGENEOUS GROUPS
    Zhang, Jinguo
    Yang, Dengyun
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (05): : 3243 - 3260
  • [23] p(x, <middle dot>)-Kirchhoff type problem involving the fractional p(x)-Laplacian operator with discontinuous nonlinearities
    El Hammar, Hassnae
    El Ouaarabi, Mohamed
    Allalou, Chakir
    Melliani, Said
    FILOMAT, 2024, 38 (06) : 2109 - 2125
  • [24] Multiple Solutions for a Kirchhoff-type Problem with Vanishing Nonlocal Term and Fractional p-Laplacian
    Liu, Zhenhai
    Motreanu, Dumitru
    Zeng, Shengda
    FRONTIERS OF MATHEMATICS, 2023, 18 (05): : 1067 - 1082
  • [25] Existence Result for Nonlocal Boundary Value Problem of Fractional Order at Resonance with p-Laplacian Operator
    Azouzi, M.
    Guedda, L.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2023, 13 (01): : 14 - 33
  • [26] Multiple Solutions for a Kirchhoff-type Problem with Vanishing Nonlocal Term and Fractional p-Laplacian
    Zhenhai Liu
    Dumitru Motreanu
    Shengda Zeng
    Frontiers of Mathematics, 2023, 18 : 1067 - 1082
  • [27] The topological degree methods for the fractional p(•)-Laplacian problems with discontinuous nonlinearities
    El Hammar, Hasnae
    Allalou, Chakir
    Abbassi, Adil
    Kassidi, Abderrazak
    CUBO-A MATHEMATICAL JOURNAL, 2022, 24 (01): : 63 - 82
  • [28] Multiple Solutions for a Fractional p-Laplacian Equation with Concave Nonlinearities
    Pei, Ruichang
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2020, 33 (02): : 93 - 108
  • [29] Solutions for nonhomogeneous fractional (p, q)-Laplacian systems with critical nonlinearities
    Tao, Mengfei
    Zhang, Binlin
    ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 1332 - 1351
  • [30] Dark solitons in nonlocal media with competing nonlinearities
    Kong, Qian
    Shen, Ming
    Chen, Zhenyi
    Wang, Qi
    Lee, Ray-Kuang
    Krolikowski, Wieslaw
    PHYSICAL REVIEW A, 2013, 87 (06):