Quantum theory with many degrees of freedom from Monte Carlo Hamiltonian

被引:7
|
作者
Luo, XQ [1 ]
Huang, CQ
Jiang, JQ
Jirari, H
Kröger, H
Moriarty, KJM
机构
[1] Zhongshan Univ, Dept Phys, Guangzhou 510275, Peoples R China
[2] Natl Ctr Theoret Sci, Hsinchu 30043, Taiwan
[3] Foshan Sci & Technol Coll, Dept Phys, Foshan 528000, Peoples R China
[4] Guangdong Inst Educ, Dept Phys, Guangzhou 510303, Peoples R China
[5] Univ Laval, Dept Phys, Quebec City, PQ G1K 7P4, Canada
[6] Dalhousie Univ, Dept Math Stat & Comp Sci, Halifax, NS B3H 3J5, Canada
关键词
D O I
10.1016/S0920-5632(00)00427-8
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
With our recently proposed effective Hamiltonian via Monte Carlo, we are able to compute low energy physics of quantum systems. The advantage is that we can obtain not only the spectrum of ground and excited states, but also wave functions. The previous work has shown the success of this method in (1+1)-dimensional quantum mechanical systems. In this work we apply it to higher dimensional systems.
引用
收藏
页码:810 / 812
页数:3
相关论文
共 50 条
  • [41] RANDOMIZED HAMILTONIAN MONTE CARLO
    Bou-Rabee, Nawaf
    Maria Sanz-Serna, Jesus
    [J]. ANNALS OF APPLIED PROBABILITY, 2017, 27 (04): : 2159 - 2194
  • [42] Hamiltonian Monte Carlo Swindles
    Piponi, Dan
    Hoffman, Matthew D.
    Sountsov, Pavel
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 3774 - 3782
  • [43] NOVEL PSEUDO-HAMILTONIAN FOR QUANTUM MONTE-CARLO SIMULATIONS
    BACHELET, GB
    CEPERLEY, DM
    CHIOCCHETTI, MGB
    [J]. PHYSICAL REVIEW LETTERS, 1989, 62 (18) : 2088 - 2091
  • [44] Hamiltonian systems with many degrees of freedom: Asymmetric motion and intensity of motion in phase space
    Kazumasa, S
    Tomohei, S
    [J]. PHYSICAL REVIEW E, 1996, 54 (05): : 4685 - 4700
  • [45] Large-amplitude oscillations and chaos in a Hamiltonian plasma system with many degrees of freedom
    Farina, D
    Pozzoli, R
    [J]. PHYSICAL REVIEW E, 2004, 70 (03):
  • [46] Second order phase transition in a highly chaotic Hamiltonian system with many degrees of freedom
    Yamaguchi, YY
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (04): : 839 - 847
  • [47] A NEKHOROSHEV-TYPE THEOREM FOR HAMILTONIAN-SYSTEMS WITH INFINITELY MANY DEGREES OF FREEDOM
    BENETTIN, G
    FROHLICH, J
    GIORGILLI, A
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 119 (01) : 95 - 108
  • [48] Hamiltonian Monte Carlo reconstruction from peculiar velocities
    Valade, Aurelien
    Hoffman, Yehuda
    Libeskind, Noam, I
    Graziani, Romain
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 513 (04) : 5148 - 5161
  • [49] The Convergence of Markov Chain Monte Carlo Methods: From the Metropolis Method to Hamiltonian Monte Carlo
    Betancourt, Michael
    [J]. ANNALEN DER PHYSIK, 2019, 531 (03)
  • [50] (3+1)-dimensional quantum mechanics from Monte Carlo Hamiltonian:: Harmonic oscillator
    Luo, XQ
    Hao, X
    Yang, JC
    Wang, YL
    Chang, D
    Lin, Y
    Kröger, H
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2001, 36 (01) : 7 - 10