Quantum theory with many degrees of freedom from Monte Carlo Hamiltonian

被引:7
|
作者
Luo, XQ [1 ]
Huang, CQ
Jiang, JQ
Jirari, H
Kröger, H
Moriarty, KJM
机构
[1] Zhongshan Univ, Dept Phys, Guangzhou 510275, Peoples R China
[2] Natl Ctr Theoret Sci, Hsinchu 30043, Taiwan
[3] Foshan Sci & Technol Coll, Dept Phys, Foshan 528000, Peoples R China
[4] Guangdong Inst Educ, Dept Phys, Guangzhou 510303, Peoples R China
[5] Univ Laval, Dept Phys, Quebec City, PQ G1K 7P4, Canada
[6] Dalhousie Univ, Dept Math Stat & Comp Sci, Halifax, NS B3H 3J5, Canada
关键词
D O I
10.1016/S0920-5632(00)00427-8
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
With our recently proposed effective Hamiltonian via Monte Carlo, we are able to compute low energy physics of quantum systems. The advantage is that we can obtain not only the spectrum of ground and excited states, but also wave functions. The previous work has shown the success of this method in (1+1)-dimensional quantum mechanical systems. In this work we apply it to higher dimensional systems.
引用
收藏
页码:810 / 812
页数:3
相关论文
共 50 条
  • [31] Bayesian Federated Learning with Hamiltonian Monte Carlo: Algorithm and Theory
    Liang, Jiajun
    Zhang, Qian
    Deng, Wei
    Song, Qifan
    Lin, Guang
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024,
  • [32] BASIS QUANTUM MONTE-CARLO THEORY
    OKSUZ, I
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (11): : 5005 - 5012
  • [33] Monte Carlo methods for quantum field theory
    Kennedy, AD
    [J]. CHINESE JOURNAL OF PHYSICS, 2000, 38 (03) : 707 - 720
  • [34] Quantum Monte Carlo diagonalization for many-fermion systems
    Yanagisawa, Takashi
    [J]. PHYSICAL REVIEW B, 2007, 75 (22):
  • [35] Split Hamiltonian Monte Carlo
    Babak Shahbaba
    Shiwei Lan
    Wesley O. Johnson
    Radford M. Neal
    [J]. Statistics and Computing, 2014, 24 : 339 - 349
  • [36] Magnetic Hamiltonian Monte Carlo
    Tripuraneni, Nilesh
    Rowland, Mark
    Ghahramani, Zoubin
    Turner, Richard
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [37] Nonparametric Hamiltonian Monte Carlo
    Mak, Carol
    Zaiser, Fabian
    Ong, Luke
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [38] Split Hamiltonian Monte Carlo
    Shahbaba, Babak
    Lan, Shiwei
    Johnson, Wesley O.
    Neal, Radford M.
    [J]. STATISTICS AND COMPUTING, 2014, 24 (03) : 339 - 349
  • [39] Microcanonical Hamiltonian Monte Carlo
    Robnik, Jakob
    De Luca, G. Bruno
    Silverstein, Eva
    Seljak, Uros
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [40] Wormhole Hamiltonian Monte Carlo
    Lan, Shiwei
    Streets, Jeffrey
    Shahbaba, Babak
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 1953 - 1959