The Convergence of Markov Chain Monte Carlo Methods: From the Metropolis Method to Hamiltonian Monte Carlo

被引:38
|
作者
Betancourt, Michael [1 ]
机构
[1] Columbia Univ, Appl Stat Ctr, New York, NY 10026 USA
关键词
Hamiltonian Monte Carlo; Markov chain Monte Carlo; molecular dynamics; Monte Carlo; STOCHASTIC QUANTIZATION; MOLECULAR-DYNAMICS; SIMULATIONS; ENSEMBLE;
D O I
10.1002/andp.201700214
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
From its inception in the 1950s to the modern frontiers of applied statistics, Markov chain Monte Carlo has been one of the most ubiquitous and successful methods in statistical computing. The development of the method in that time has been fueled by not only increasingly difficult problems but also novel techniques adopted from physics. Here, the history of Markov chain Monte Carlo is reviewed from its inception with the Metropolis method to the contemporary state-of-the-art in Hamiltonian Monte Carlo, focusing on the evolving interplay between the statistical and physical perspectives of the method.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Markov Chain Monte Carlo posterior sampling with the Hamiltonian method
    Hanson, KM
    [J]. MEDICAL IMAGING: 2001: IMAGE PROCESSING, PTS 1-3, 2001, 4322 : 456 - 467
  • [2] Convergence control methods for Markov chain Monte Carlo algorithms
    Robert, CP
    [J]. STATISTICAL SCIENCE, 1995, 10 (03) : 231 - 253
  • [3] Convergence Diagnostics for Markov Chain Monte Carlo
    Roy, Vivekananda
    [J]. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 7, 2020, 2020, 7 : 387 - 412
  • [4] Markov Chain Monte Carlo methods1. Simple Monte Carlo
    K B Athreya
    Mohan Delampady
    T Krishnan
    [J]. Resonance, 2003, 8 (4) : 17 - 26
  • [5] Comparison of methodologies to assess the convergence of Markov chain Monte Carlo methods
    El Adlouni, Salaheddine
    Favre, Anne-Catherine
    Bobee, Bernard
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (10) : 2685 - 2701
  • [6] An introduction to Markov chain Monte Carlo methods
    Besag, J
    [J]. MATHEMATICAL FOUNDATIONS OF SPEECH AND LANGUAGE PROCESSING, 2004, 138 : 247 - 270
  • [7] The Evolution of Markov Chain Monte Carlo Methods
    Richey, Matthew
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2010, 117 (05): : 383 - 413
  • [8] Particle Markov chain Monte Carlo methods
    Andrieu, Christophe
    Doucet, Arnaud
    Holenstein, Roman
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 : 269 - 342
  • [9] MARGINAL MARKOV CHAIN MONTE CARLO METHODS
    van Dyk, David A.
    [J]. STATISTICA SINICA, 2010, 20 (04) : 1423 - 1454
  • [10] On quantile estimation and Markov chain Monte Carlo convergence
    Brooks, SP
    Roberts, GO
    [J]. BIOMETRIKA, 1999, 86 (03) : 710 - 717