Rhombic Penrose tilings can be 3-colored

被引:13
|
作者
Sibley, T [1 ]
Wagon, S
机构
[1] St Johns Univ, Collegeville, MN 56321 USA
[2] Macalester Coll, St Paul, MN 55105 USA
来源
AMERICAN MATHEMATICAL MONTHLY | 2000年 / 107卷 / 03期
关键词
D O I
10.2307/2589317
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:251 / 253
页数:3
相关论文
共 50 条
  • [1] Patch frequencies in rhombic Penrose tilings
    Mazac, Jan
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2023, 79 : 399 - 411
  • [2] Eight different decagonal tilings derived from rhombic Penrose tiling
    Kato, Kazuyuki
    Yamamoto, Akiji
    PHILOSOPHICAL MAGAZINE, 2011, 91 (19-21) : 2579 - 2586
  • [3] TRIANGULATING 3-COLORED GRAPHS
    KANNAN, SK
    WARNOW, TJ
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1992, 5 (02) : 249 - 258
  • [4] COMPUTING THE UNION OF 3-COLORED TRIANGLES
    Boissonnat, Jean-Daniel
    Devillers, Olivier
    Preparata, Franco P.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1991, 1 (02) : 187 - 196
  • [5] COMPUTING THE UNION OF 3-COLORED TRIANGLES
    BOISSONNAT, JD
    DEVILLERS, O
    PREPARATA, FP
    LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1992, 180 : 85 - 93
  • [6] Economic 3-Colored Subdivision of Triangulations
    Bueno, Lucas Moutinho
    Stolfi, Jorge
    ALGORITHMS - ESA 2013, 2013, 8125 : 265 - 276
  • [7] THE RESTRICTED 3-COLORED PARTITION FUNCTION MOD 3
    Lin, Bernard L. S.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (07) : 1789 - 1799
  • [8] A Better Heuristic Algorithm for Finding the Closest Trio of 3-colored Points from a Given Set of 3-colored Points on a Plane
    Ngoc Trung Nguyen
    Anh-Duc Duong
    FUNDAMENTA INFORMATICAE, 2014, 130 (02) : 219 - 229
  • [9] UNICYCLIC 3-COLORED DIGRAPHS WITH BICYCLIC INVERSES
    Kalita, Debajit
    Sarma, Kuldeep
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2022, 38 : 519 - 530
  • [10] The 3-colored Ramsey number of even cycles
    Benevides, Fabricio Siqueira
    Skokan, Jozef
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (04) : 690 - 708