Patch frequencies in rhombic Penrose tilings

被引:1
|
作者
Mazac, Jan [1 ]
机构
[1] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
关键词
patch frequency; tiling; dualization method; SYMMETRY;
D O I
10.1107/S2053273323004990
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This exposition presents an efficient algorithm for an exact calculation of patch frequencies for rhombic Penrose tilings. A construction of Penrose tilings via dualization is recalled and, by extending the known method for obtaining vertex configurations, the desired algorithm is obtained. It is then used to determine the frequencies of several particularly large patches which appear in the literature. An analogous approach works for a particular class of tilings and this is also explained in detail for the Ammann-Beenker tiling.
引用
收藏
页码:399 / 411
页数:13
相关论文
共 50 条
  • [1] Rhombic Penrose tilings can be 3-colored
    Sibley, T
    Wagon, S
    AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (03): : 251 - 253
  • [2] Eight different decagonal tilings derived from rhombic Penrose tiling
    Kato, Kazuyuki
    Yamamoto, Akiji
    PHILOSOPHICAL MAGAZINE, 2011, 91 (19-21) : 2579 - 2586
  • [3] Deformed Penrose tilings
    Welberry, T. R.
    Sing, B.
    PHILOSOPHICAL MAGAZINE, 2007, 87 (18-21) : 2877 - 2886
  • [4] Deformed Penrose Tilings
    Welberry, T. R.
    Beasley, A. G.
    Sing, Bernd
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2006, 62 : S45 - S45
  • [5] Stripes on Penrose tilings
    Hizume, A.
    Yamagishi, Y.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (01)
  • [6] Percolation on Penrose tilings
    Hof, A
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1998, 41 (02): : 166 - 177
  • [7] Homogenization of Penrose tilings
    Braides, Andrea
    Riey, Giuseppe
    Solci, Margherita
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (11-12) : 697 - 700
  • [8] Free arrangements and rhombic tilings
    Edelman, PH
    Reiner, V
    DISCRETE & COMPUTATIONAL GEOMETRY, 1996, 15 (03) : 307 - 340
  • [9] Penrose tilings as model sets
    Shutov, A. V.
    Maleev, A. V.
    CRYSTALLOGRAPHY REPORTS, 2015, 60 (06) : 797 - 804
  • [10] Penrose Tilings as Jammed Solids
    Stenull, Olaf
    Lubensky, T. C.
    PHYSICAL REVIEW LETTERS, 2014, 113 (15)