Stripes on Penrose tilings

被引:3
|
作者
Hizume, A. [1 ]
Yamagishi, Y. [1 ]
机构
[1] Ryukoku Univ, Dept Appl Math & Informat, Otsu, Shiga 5202194, Japan
关键词
SETS;
D O I
10.1088/1751-8113/44/1/015202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the existence of one-dimensional quasicrystal structures on the vertex set Lambda(P) of a Penrose tiling, in an arbitrary direction w is an element of C. If wR boolean AND Z[zeta] not equal 0, zeta = e(2 pi i/5), then Lambda(P) + wR is a discrete family of lines that has a one-dimensional quasicrystal structure. Conversely, if w not equal 0 and wR boolean AND Z[zeta] = 0, Lambda(P) + wR is a dense subset of C. We also have a weak analog of Kronecker's approximation theorem.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Deformed Penrose tilings
    Welberry, T. R.
    Sing, B.
    PHILOSOPHICAL MAGAZINE, 2007, 87 (18-21) : 2877 - 2886
  • [2] Deformed Penrose Tilings
    Welberry, T. R.
    Beasley, A. G.
    Sing, Bernd
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2006, 62 : S45 - S45
  • [3] Percolation on Penrose tilings
    Hof, A
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1998, 41 (02): : 166 - 177
  • [4] Homogenization of Penrose tilings
    Braides, Andrea
    Riey, Giuseppe
    Solci, Margherita
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (11-12) : 697 - 700
  • [5] Penrose tilings as model sets
    Shutov, A. V.
    Maleev, A. V.
    CRYSTALLOGRAPHY REPORTS, 2015, 60 (06) : 797 - 804
  • [6] Penrose Tilings as Jammed Solids
    Stenull, Olaf
    Lubensky, T. C.
    PHYSICAL REVIEW LETTERS, 2014, 113 (15)
  • [7] Penrose tilings and quasicrystals revisited
    Steinhardt, PJ
    GEOMETRIC UNIVERSE: SCIENCE, GEOMETRY, AND THE WORK OF ROGER PENROSE, 1998, : 215 - 226
  • [8] A noncommutative theory of penrose tilings
    Mulvey, CJ
    Resende, P
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2005, 44 (06) : 655 - 689
  • [9] The dynamical properties of Penrose tilings
    Robinson, EA
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (11) : 4447 - 4464
  • [10] Penrose tilings, quasicrystals, and wavelets
    Antoine, JP
    Jacques, L
    Vandergheynst, P
    WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VII, 1999, 3813 : 28 - 39