Stripes on Penrose tilings

被引:3
|
作者
Hizume, A. [1 ]
Yamagishi, Y. [1 ]
机构
[1] Ryukoku Univ, Dept Appl Math & Informat, Otsu, Shiga 5202194, Japan
关键词
SETS;
D O I
10.1088/1751-8113/44/1/015202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the existence of one-dimensional quasicrystal structures on the vertex set Lambda(P) of a Penrose tiling, in an arbitrary direction w is an element of C. If wR boolean AND Z[zeta] not equal 0, zeta = e(2 pi i/5), then Lambda(P) + wR is a discrete family of lines that has a one-dimensional quasicrystal structure. Conversely, if w not equal 0 and wR boolean AND Z[zeta] = 0, Lambda(P) + wR is a dense subset of C. We also have a weak analog of Kronecker's approximation theorem.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] COMPUTER GENERATION OF PENROSE TILINGS.
    Rangel-Mondragon, J.
    Abas, S.J.
    Computer Graphics Forum, 1988, 7 (01) : 29 - 37
  • [22] Patch frequencies in rhombic Penrose tilings
    Mazac, Jan
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2023, 79 : 399 - 411
  • [23] Penrose tilings as coverings of congruent decagons
    Gummelt, P
    GEOMETRIAE DEDICATA, 1996, 62 (01) : 1 - 17
  • [24] The symplectic geometry of Penrose rhombus tilings
    Battaglia, Fiammetta
    Prato, Elisa
    JOURNAL OF SYMPLECTIC GEOMETRY, 2008, 6 (02) : 139 - 158
  • [25] A cluster approach to random Penrose tilings
    Gummelt, P
    Bandt, C
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2000, 294 (294-296): : 250 - 253
  • [26] A Shannon theoretic study of Penrose tilings
    Soljanin, E
    1998 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 1998, : 78 - 78
  • [27] RENORMALIZATION-GROUP FOR PENROSE TILINGS
    YOU, JQ
    YAN, JR
    ZHONG, JX
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1993, 153 : 434 - 438
  • [28] The big bang singularity and Penrose tilings
    Heller, M
    Sasin, W
    SMALL SATELLITES FOR ASTROPHYSICAL RESEARCH, THE COPERNICAN PRINCIPLE AND HOMOGENEITY OF THE UNIVERSE, 2003, 31 (02): : 443 - 448
  • [29] Symmetry properties of Penrose type tilings
    Cotfas, N.
    PHILOSOPHICAL MAGAZINE, 2008, 88 (13-15) : 2017 - 2023
  • [30] C*-algebras of Penrose hyperbolic tilings
    Oyono-Oyono, Herve
    Petite, Samuel
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (02) : 400 - 424