Patch frequencies in rhombic Penrose tilings

被引:1
|
作者
Mazac, Jan [1 ]
机构
[1] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
关键词
patch frequency; tiling; dualization method; SYMMETRY;
D O I
10.1107/S2053273323004990
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This exposition presents an efficient algorithm for an exact calculation of patch frequencies for rhombic Penrose tilings. A construction of Penrose tilings via dualization is recalled and, by extending the known method for obtaining vertex configurations, the desired algorithm is obtained. It is then used to determine the frequencies of several particularly large patches which appear in the literature. An analogous approach works for a particular class of tilings and this is also explained in detail for the Ammann-Beenker tiling.
引用
收藏
页码:399 / 411
页数:13
相关论文
共 50 条
  • [21] A Noncommutative Theory of Penrose Tilings
    Christopher J. Mulvey
    Pedro Resende
    International Journal of Theoretical Physics, 2005, 44 : 655 - 689
  • [22] INFLATIONARY CHARACTER OF PENROSE TILINGS
    GEFEN, Y
    KLEMAN, M
    PAVLOVITCH, A
    PEYRIERE, J
    JOURNAL DE PHYSIQUE, 1988, 49 (07): : 1111 - 1118
  • [23] Erratum to Free Arrangement and Rhombic Tilings
    P. H. Edelman
    V. Reiner
    Discrete & Computational Geometry, 1997, 17 (3) : 359 - 359
  • [24] Comment on "Penrose Tilings as Jammed Solids"
    Moukarzel, Cristian F.
    Naumis, Gerardo G.
    PHYSICAL REVIEW LETTERS, 2015, 115 (20)
  • [25] Gliders in Cellular Automata on Penrose Tilings
    Goucher, Adam P.
    JOURNAL OF CELLULAR AUTOMATA, 2012, 7 (5-6) : 385 - 392
  • [26] COMPUTER GENERATION OF PENROSE TILINGS.
    Rangel-Mondragon, J.
    Abas, S.J.
    Computer Graphics Forum, 1988, 7 (01) : 29 - 37
  • [27] Penrose tilings as coverings of congruent decagons
    Gummelt, P
    GEOMETRIAE DEDICATA, 1996, 62 (01) : 1 - 17
  • [28] The symplectic geometry of Penrose rhombus tilings
    Battaglia, Fiammetta
    Prato, Elisa
    JOURNAL OF SYMPLECTIC GEOMETRY, 2008, 6 (02) : 139 - 158
  • [29] A cluster approach to random Penrose tilings
    Gummelt, P
    Bandt, C
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2000, 294 (294-296): : 250 - 253
  • [30] A Shannon theoretic study of Penrose tilings
    Soljanin, E
    1998 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 1998, : 78 - 78