Comment on "Penrose Tilings as Jammed Solids"

被引:5
|
作者
Moukarzel, Cristian F. [1 ]
Naumis, Gerardo G.
机构
[1] IPN, CINVESTAV, Dept Fis Aplicada, Merida 97310, Yucatan, Mexico
关键词
GLASSES;
D O I
10.1103/PhysRevLett.115.209801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页数:1
相关论文
共 50 条
  • [1] Comment on "Penrose Tilings as Jammed Solids" Reply
    Stenull, Olaf
    Lubensky, T. C.
    PHYSICAL REVIEW LETTERS, 2015, 115 (20)
  • [2] Penrose Tilings as Jammed Solids
    Stenull, Olaf
    Lubensky, T. C.
    PHYSICAL REVIEW LETTERS, 2014, 113 (15)
  • [3] Deformed Penrose tilings
    Welberry, T. R.
    Sing, B.
    PHILOSOPHICAL MAGAZINE, 2007, 87 (18-21) : 2877 - 2886
  • [4] Deformed Penrose Tilings
    Welberry, T. R.
    Beasley, A. G.
    Sing, Bernd
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2006, 62 : S45 - S45
  • [5] Stripes on Penrose tilings
    Hizume, A.
    Yamagishi, Y.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (01)
  • [6] Percolation on Penrose tilings
    Hof, A
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1998, 41 (02): : 166 - 177
  • [7] Homogenization of Penrose tilings
    Braides, Andrea
    Riey, Giuseppe
    Solci, Margherita
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (11-12) : 697 - 700
  • [8] Penrose tilings as model sets
    Shutov, A. V.
    Maleev, A. V.
    CRYSTALLOGRAPHY REPORTS, 2015, 60 (06) : 797 - 804
  • [9] Penrose tilings and quasicrystals revisited
    Steinhardt, PJ
    GEOMETRIC UNIVERSE: SCIENCE, GEOMETRY, AND THE WORK OF ROGER PENROSE, 1998, : 215 - 226
  • [10] A noncommutative theory of penrose tilings
    Mulvey, CJ
    Resende, P
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2005, 44 (06) : 655 - 689