Rhombic Penrose tilings can be 3-colored

被引:13
|
作者
Sibley, T [1 ]
Wagon, S
机构
[1] St Johns Univ, Collegeville, MN 56321 USA
[2] Macalester Coll, St Paul, MN 55105 USA
来源
AMERICAN MATHEMATICAL MONTHLY | 2000年 / 107卷 / 03期
关键词
D O I
10.2307/2589317
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:251 / 253
页数:3
相关论文
共 50 条
  • [31] STATISTICS OF WORMS IN PENROSE TILINGS
    PAVLOVITCH, A
    GEFEN, Y
    KLEMAN, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (20): : 4347 - 4373
  • [32] A SIMPLE LINEAR TIME ALGORITHM FOR TRIANGULATING 3-COLORED GRAPHS
    BODLAENDER, H
    KLOKS, T
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 577 : 415 - 423
  • [33] Penrose Tilings and Parity Conditions
    Arvind Sinha
    Gaurav Modi
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2014, 84 : 571 - 576
  • [34] Classical Dimers on Penrose Tilings
    Flicker, Felix
    Simon, Steven H.
    Parameswaran, S. A.
    PHYSICAL REVIEW X, 2020, 10 (01):
  • [35] Penrose tilings as model sets
    A. V. Shutov
    A. V. Maleev
    Crystallography Reports, 2015, 60 : 797 - 804
  • [36] A Noncommutative Theory of Penrose Tilings
    Christopher J. Mulvey
    Pedro Resende
    International Journal of Theoretical Physics, 2005, 44 : 655 - 689
  • [37] INFLATIONARY CHARACTER OF PENROSE TILINGS
    GEFEN, Y
    KLEMAN, M
    PAVLOVITCH, A
    PEYRIERE, J
    JOURNAL DE PHYSIQUE, 1988, 49 (07): : 1111 - 1118
  • [38] On the curve complexity of 3-colored point-set embeddings
    Di Giacomo, Emilio
    Gasieniec, Leszek
    Liotta, Giuseppe
    Navarra, Alfredo
    THEORETICAL COMPUTER SCIENCE, 2020, 846 : 114 - 140
  • [39] TOPOLOGICAL BOOTSTRAP PREDICTION OF 3-COLORED, 8-FLAVORED QUARKS
    CHEW, GF
    POENARU, V
    PHYSICAL REVIEW LETTERS, 1980, 45 (04) : 229 - 231
  • [40] Markov random fields, Markov cocycles and the 3-colored chessboard
    Nishant Chandgotia
    Tom Meyerovitch
    Israel Journal of Mathematics, 2016, 215 : 909 - 964