Classical Dimers on Penrose Tilings

被引:20
|
作者
Flicker, Felix [1 ]
Simon, Steven H. [1 ]
Parameswaran, S. A. [1 ]
机构
[1] Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3PU, England
来源
PHYSICAL REVIEW X | 2020年 / 10卷 / 01期
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
QUASI-CRYSTAL SURFACES; VALENCE-BOND STATE; MAGNETIC MONOPOLES; STATISTICAL-MECHANICS; WAVE-FUNCTIONS; LOCALIZATION; ADSORPTION; TOPOLOGY; LATTICE; PHASE;
D O I
10.1103/PhysRevX.10.011005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the classical dimer model on rhombic Penrose tilings, whose edges and vertices may be identified as those of a bipartite graph. We find that Penrose filings do not admit perfect matchings (defect-free dimer coverings). Instead, their maximum matchings have a monomer density of 81 - 50 phi approximate to 0.098 in the thermodynamic limit, with phi = (1 + root 5)/2 the golden ratio. Maximum matchings divide the tiling into a fractal of nested closed regions bounded by loops that cannot be crossed by monomers. These loops connect second-nearest-neighbor even-valence vertices, each of which lies on such a loop. Assigning a charge to each monomer with a sign fixed by its bipartite sublattice, we find that each bounded region has an excess of one charge, and a corresponding set of monomers, with adjacent regions having opposite net charge. The infinite tiling is charge neutral. We devise a simple algorithm for generating maximum matchings and demonstrate that maximum matchings form a connected manifold under local monomer-dimer rearrangements. We show that dart-kite Penrose tilings feature an imbalance of charge between bipartite sublattices, leading to a minimum monomer density of (7 - 4 phi)/5 approximate to 0.106 all of one charge.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Deformed Penrose tilings
    Welberry, T. R.
    Sing, B.
    PHILOSOPHICAL MAGAZINE, 2007, 87 (18-21) : 2877 - 2886
  • [2] Deformed Penrose Tilings
    Welberry, T. R.
    Beasley, A. G.
    Sing, Bernd
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2006, 62 : S45 - S45
  • [3] Stripes on Penrose tilings
    Hizume, A.
    Yamagishi, Y.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (01)
  • [4] Percolation on Penrose tilings
    Hof, A
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1998, 41 (02): : 166 - 177
  • [5] Homogenization of Penrose tilings
    Braides, Andrea
    Riey, Giuseppe
    Solci, Margherita
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (11-12) : 697 - 700
  • [6] Penrose tilings as model sets
    Shutov, A. V.
    Maleev, A. V.
    CRYSTALLOGRAPHY REPORTS, 2015, 60 (06) : 797 - 804
  • [7] Penrose Tilings as Jammed Solids
    Stenull, Olaf
    Lubensky, T. C.
    PHYSICAL REVIEW LETTERS, 2014, 113 (15)
  • [8] Penrose tilings and quasicrystals revisited
    Steinhardt, PJ
    GEOMETRIC UNIVERSE: SCIENCE, GEOMETRY, AND THE WORK OF ROGER PENROSE, 1998, : 215 - 226
  • [9] A noncommutative theory of penrose tilings
    Mulvey, CJ
    Resende, P
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2005, 44 (06) : 655 - 689
  • [10] The dynamical properties of Penrose tilings
    Robinson, EA
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (11) : 4447 - 4464