COMPUTING THE UNION OF 3-COLORED TRIANGLES

被引:5
|
作者
Boissonnat, Jean-Daniel [1 ]
Devillers, Olivier [1 ]
Preparata, Franco P. [1 ,2 ]
机构
[1] INRIA, F-06561 Valbonne, France
[2] Brown Univ, Dept Comp Sci, Providence, RI 02912 USA
关键词
Convex hull; Legged robot; Motion planning; Stability;
D O I
10.1142/S021819599100013X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given is a set S of n points, each colored with one of k >= 3 colours. We say that a triangle defined by three points of S is 3-colored if its vertices have distinct colours. We prove in this paper that the problem of constructing the boundary of the union T(S) of all such 3-colored triangles can be done in optimal O(n log n) time.
引用
收藏
页码:187 / 196
页数:10
相关论文
共 50 条
  • [1] COMPUTING THE UNION OF 3-COLORED TRIANGLES
    BOISSONNAT, JD
    DEVILLERS, O
    PREPARATA, FP
    LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1992, 180 : 85 - 93
  • [2] TRIANGULATING 3-COLORED GRAPHS
    KANNAN, SK
    WARNOW, TJ
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1992, 5 (02) : 249 - 258
  • [3] Economic 3-Colored Subdivision of Triangulations
    Bueno, Lucas Moutinho
    Stolfi, Jorge
    ALGORITHMS - ESA 2013, 2013, 8125 : 265 - 276
  • [4] THE RESTRICTED 3-COLORED PARTITION FUNCTION MOD 3
    Lin, Bernard L. S.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (07) : 1789 - 1799
  • [5] A Better Heuristic Algorithm for Finding the Closest Trio of 3-colored Points from a Given Set of 3-colored Points on a Plane
    Ngoc Trung Nguyen
    Anh-Duc Duong
    FUNDAMENTA INFORMATICAE, 2014, 130 (02) : 219 - 229
  • [6] UNICYCLIC 3-COLORED DIGRAPHS WITH BICYCLIC INVERSES
    Kalita, Debajit
    Sarma, Kuldeep
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2022, 38 : 519 - 530
  • [7] Rhombic Penrose tilings can be 3-colored
    Sibley, T
    Wagon, S
    AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (03): : 251 - 253
  • [8] The 3-colored Ramsey number of even cycles
    Benevides, Fabricio Siqueira
    Skokan, Jozef
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (04) : 690 - 708
  • [9] THE 3-COLORED 3-DIMENSIONAL SPACE-GROUPS
    HARKER, D
    ACTA CRYSTALLOGRAPHICA SECTION A, 1981, 37 (MAY): : 286 - 292
  • [10] Recurrences for 2-colored and 3-colored F-partitions
    Sellers, JA
    DISCRETE MATHEMATICS, 1996, 156 (1-3) : 303 - 310