On Ehrhart Polynomials of Lattice Triangles

被引:0
|
作者
Hofscheier, Johannes
Nill, Benjamin [1 ]
Oberg, Dennis [2 ]
机构
[1] Otto von Guericke Univ, Inst Algebra & Geometrie, Magdeburg, Germany
[2] Stockholm Univ, Dept Math, Stockholm, Sweden
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2018年 / 25卷 / 01期
关键词
Lattice triangles; Ehrhart polynomial; h*-vector; toric surfaces; sectional genus; Scott's inequality;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Ehrhart polynomial of a lattice polygon P is completely determined by the pair (b(P), i(P)) where b(P) equals the number of lattice points on the boundary and i(P) equals the number of interior lattice points. All possible pairs (b(P), i(P)) are completely described by a theorem due to Scott. In this note, we describe the shape of the set of pairs (b(T), i(T)) for lattice triangles T by finding infinitely many new Scott-type inequalities.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Counterexamples of the Conjecture on Roots of Ehrhart Polynomials
    Akihiro Higashitani
    [J]. Discrete & Computational Geometry, 2012, 47 : 618 - 623
  • [42] q-ANALOGUES OF EHRHART POLYNOMIALS
    Chapoton, F.
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2016, 59 (02) : 339 - 358
  • [43] Volumes and Ehrhart polynomials of flow polytopes
    Meszaros, Karola
    Morales, Alejandro H.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2019, 293 (3-4) : 1369 - 1401
  • [44] A finite calculus approach to Ehrhart polynomials
    Sam, Steven V.
    Woods, Kevin M.
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [45] Ehrhart Series and Lattice Triangulations
    Sam Payne
    [J]. Discrete & Computational Geometry, 2008, 40 : 365 - 376
  • [46] Characteristic polynomials, Ehrhart quasi-polynomials, and torus groups
    Lawrence, J
    [J]. JOURNAL OF NUMBER THEORY, 2006, 117 (02) : 315 - 329
  • [47] Roots of Ehrhart Polynomials of Smooth Fano Polytopes
    Hegedues, Gabor
    Kasprzyk, Alexander M.
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2011, 46 (03) : 488 - 499
  • [48] Ehrhart polynomials of convex polytopes with small volumes
    Hibi, Takayuki
    Higashitani, Akihiro
    Nagazawa, Yuuki
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (02) : 226 - 232
  • [49] Multivariate volume, Ehrhart, and h*-polynomials of polytropes
    Brandenburg, Marie-Charlotte
    Elia, Sophia
    Zhang, Leon
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2023, 114 : 209 - 230
  • [50] SOME RESULTS ON EHRHART POLYNOMIALS OF CONVEX POLYTOPES
    HIBI, T
    [J]. DISCRETE MATHEMATICS, 1990, 83 (01) : 119 - 121