Ehrhart Series and Lattice Triangulations

被引:0
|
作者
Sam Payne
机构
[1] Stanford University,Department of Mathematics
来源
关键词
Lattice Point; Simplicial Complex; Discrete Comput Geom; Relative Interior; Lattice Polytope;
D O I
暂无
中图分类号
学科分类号
摘要
We express the generating function for lattice points in a rational polyhedral cone with a simplicial subdivision in terms of multivariate analogues of the h-polynomials of the subdivision and “local contributions” of the links of its nonunimodular faces. We also compute new examples of nonunimodal h*-vectors of reflexive polytopes.
引用
下载
收藏
页码:365 / 376
页数:11
相关论文
共 50 条
  • [1] Ehrhart series and lattice triangulations
    Payne, Sam
    DISCRETE & COMPUTATIONAL GEOMETRY, 2008, 40 (03) : 365 - 376
  • [2] The Ehrhart polynomial of a lattice polytope
    Diaz, R
    Robins, S
    ANNALS OF MATHEMATICS, 1997, 145 (03) : 503 - 518
  • [3] On Ehrhart Polynomials of Lattice Triangles
    Hofscheier, Johannes
    Nill, Benjamin
    Oberg, Dennis
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (01):
  • [4] Growth series and Ehrhart series for root lattices
    Bacher, R
    de la Harpe, P
    Venkov, B
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (11): : 1137 - 1142
  • [5] LATTICE PLATONIC SOLIDS AND THEIR EHRHART POLYNOMIAL
    Ionascu, E. J.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2013, 82 (01): : 147 - 158
  • [6] Ehrhart polynomials of lattice polyhedral functions
    Chen, BF
    Integer Points in Polyhedra-Geometry, Number Theory, Algebra, Optimization, 2005, 374 : 37 - 63
  • [7] Ehrhart Theory of Spanning Lattice Polytopes
    Hofscheier, Johannes
    Katthaen, Lukas
    Nill, Benjamin
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (19) : 5947 - 5973
  • [8] Lattice points, Dedekind sums, and Ehrhart polynomials of lattice polyhedra
    Chen, BF
    DISCRETE & COMPUTATIONAL GEOMETRY, 2002, 28 (02) : 175 - 199
  • [9] Lattice Points, Dedekind Sums, and Ehrhart Polynomials of Lattice Polyhedra
    Discrete & Computational Geometry, 2002, 28 : 175 - 199
  • [10] An Ehrhart series formula for reflexive polytopes
    Braun, Benjamin
    ELECTRONIC JOURNAL OF COMBINATORICS, 2006, 13 (01):