Multi-label Classification with Gene Expression Programming

被引:0
|
作者
Avila, J. L. [1 ]
Gibaja, E. L. [1 ]
Ventura, S. [1 ]
机构
[1] Univ Cordoba, Dept Comp Sci & Numer Anal, E-14071 Cordoba, Spain
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce a, Gene Expression Programming algorithm for multi label classification. This algorithm encodes each individual into a discriminant function that shows whether a pattern belongs to a given class or not. The algorithm also applies a niching technique to guarantee that the population includes functions for each existing class. In order to evaluate the quality of our algorithm, its performance is compared to that of four recently published algorithms. The results show that our proposal is the best; in terms of accuracy, precision and recall.
引用
收藏
页码:629 / 637
页数:9
相关论文
共 50 条
  • [1] A Gene Expression Programming Algorithm for Multi-Label Classification
    Avila, J. L.
    Gibaja, E. L.
    Zafra, A.
    Ventura, S.
    [J]. JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2011, 17 (2-3) : 183 - 206
  • [2] Evolving Multi-label Classification Rules with Gene Expression Programming: A Preliminary Study
    Luis Avila-Jimenez, Jose
    Gibaja, Eva
    Ventura, Sebastian
    [J]. HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS, PT 2, 2010, 6077 : 9 - 16
  • [3] Multi-label classification of gene function using MLPs
    Skabar, Andrew
    Wollersheim, Dennis
    Whitfort, Tim
    [J]. 2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 2234 - +
  • [4] A MULTI-LABEL CLASSIFICATION APPROACH FOR FACIAL EXPRESSION RECOGNITION
    Zhao, Kaili
    Zhang, Honggang
    Dong, Mingzhi
    Guo, Jun
    Qi, Yonggang
    Song, Yi-Zhe
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (IEEE VCIP 2013), 2013,
  • [5] Label Expansion for Multi-Label Classification
    Rivolli, Adriano
    Soares, Carlos
    de Carvalho, Andre C. P. L. F.
    [J]. 2018 7TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2018, : 414 - 419
  • [6] MLCE: A Multi-Label Crotch Ensemble Method for Multi-Label Classification
    Yao, Yuan
    Li, Yan
    Ye, Yunming
    Li, Xutao
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (04)
  • [7] Recommendation of programming activities by multi-label classification for a formative assessment of students
    de Oliveira, Marcia Goncalves
    Ciarelli, Patrick Marques
    Oliveira, Elias
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (16) : 6641 - 6651
  • [8] The advances in multi-label classification
    Chen, Shijun
    Gao, Lin
    [J]. 2014 INTERNATIONAL CONFERENCE ON MANAGEMENT OF E-COMMERCE AND E-GOVERNMENT (ICMECG), 2014, : 240 - 245
  • [9] Multi-label Dysfluency Classification
    Jouaiti, Melanie
    Dautenhahn, Kerstin
    [J]. SPEECH AND COMPUTER, SPECOM 2022, 2022, 13721 : 290 - 301
  • [10] Multi-label Deepfake Classification
    Singh, Inder Pal
    Mejri, Nesryne
    Nguyen, Van Dat
    Ghorbel, Enjie
    Aouada, Djamila
    [J]. 2023 IEEE 25TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, MMSP, 2023,