A Gene Expression Programming Algorithm for Multi-Label Classification

被引:0
|
作者
Avila, J. L. [1 ]
Gibaja, E. L. [1 ]
Zafra, A. [1 ]
Ventura, S. [1 ]
机构
[1] Univ Cordoba, Dept Comp Sci & Numer Anal, E-14071 Cordoba, Spain
关键词
Multi-label classification; discriminant functions; gene expression programming; machine learning; STATISTICAL COMPARISONS; CLASSIFIERS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a Gene Expression Programming algorithm for multi-label classification which encodes a discriminant function into each individual to show whether a pattern belongs to a given class or not. The algorithm also applies a niching technique to guarantee that the population includes functions for each existing class. The algorithm has been compared to other recently published algorithms. The results found on several datasets demonstrate the feasibility of this approach in the tackling of multi-label problems.
引用
收藏
页码:183 / 206
页数:24
相关论文
共 50 条
  • [1] Multi-label Classification with Gene Expression Programming
    Avila, J. L.
    Gibaja, E. L.
    Ventura, S.
    [J]. HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS, 2009, 5572 : 629 - 637
  • [2] Evolving Multi-label Classification Rules with Gene Expression Programming: A Preliminary Study
    Luis Avila-Jimenez, Jose
    Gibaja, Eva
    Ventura, Sebastian
    [J]. HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS, PT 2, 2010, 6077 : 9 - 16
  • [3] An improved multi-label classification algorithm BRkNN
    Geng, Xia
    Tang, Yujia
    Zhu, Yuquan
    Cheng, Geng
    [J]. Journal of Information and Computational Science, 2014, 11 (16): : 5927 - 5936
  • [4] A Joint Embedded Multi-label Classification Algorithm
    Liu H.-T.
    Leng X.-Y.
    Wang L.-L.
    Zhao P.
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2019, 45 (10): : 1969 - 1982
  • [5] Label Relevance Based Multi-Label Scratch Classification Algorithm
    Peng C.
    Sun Y.
    Qi P.
    [J]. Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2019, 42 (06): : 134 - 141
  • [6] Multi-label Classification based on Particle Swarm Algorithm
    Liang, Qingzhong
    Wang, Ze
    Fan, Yuanyuan
    Liu, Chao
    Yan, Xuesong
    Hu, Chengyu
    Yao, Hong
    [J]. 2013 IEEE NINTH INTERNATIONAL CONFERENCE ON MOBILE AD-HOC AND SENSOR NETWORKS (MSN 2013), 2013, : 421 - 424
  • [7] An Improved Multi-label Classification Ensemble Learning Algorithm
    Fu, Zhongliang
    Wang, Lili
    Zhang, Danpu
    [J]. PATTERN RECOGNITION (CCPR 2014), PT I, 2014, 483 : 243 - 252
  • [8] Multi-Label Rules Algorithm Based Associative Classification
    Abdelhamid, Neda
    Ayesh, Aladdin
    Hadi, Wael
    [J]. PARALLEL PROCESSING LETTERS, 2014, 24 (01)
  • [9] Memetic feature selection algorithm for multi-label classification
    Lee, Jaesung
    Kim, Dae-Won
    [J]. INFORMATION SCIENCES, 2015, 293 : 80 - 96
  • [10] A label propagation algorithm for multi-label classification using hadoop technology
    Sun, Xia
    Zhang, Minchao
    Feng, Jun
    Zhang, Lei
    He, Feijuan
    [J]. Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2015, 49 (05): : 134 - 139