An Improved Multi-label Classification Ensemble Learning Algorithm

被引:0
|
作者
Fu, Zhongliang [1 ]
Wang, Lili [1 ]
Zhang, Danpu [1 ]
机构
[1] Chinese Acad Sci, Chengdu Inst Comp Applicat, Chengdu, Sichuan, Peoples R China
来源
关键词
multi-label classification problem; statistical learning; ensemble learning; AdaBoost algorithm; confidence;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an improved algorithm based on minimizing the weighted error of mistake labels and miss labels in multi-label classification ensemble learning algorithm. The new algorithm aims to avoid local optimum by redefining weak classifiers. This algorithm considers the correlations of labels under the precondition of ensuring the error drops with the number of weak classifiers increasing. This paper proposes two improved approaches; one introduces combinational coefficients when combining weak classifiers, another smooth the weak classifier's output to avoid local optimum. We discuss the basis of these modifications, and verify the effectiveness of these algorithms. The experimental results show that all the improved algorithms are effective, and less prone to over fitting.
引用
收藏
页码:243 / 252
页数:10
相关论文
共 50 条
  • [1] Dynamic ensemble learning for multi-label classification
    Zhu, Xiaoyan
    Li, Jiaxuan
    Ren, Jingtao
    Wang, Jiayin
    Wang, Guangtao
    [J]. INFORMATION SCIENCES, 2023, 623 : 94 - 111
  • [2] An improved multi-label classification algorithm BRkNN
    Geng, Xia
    Tang, Yujia
    Zhu, Yuquan
    Cheng, Geng
    [J]. Journal of Information and Computational Science, 2014, 11 (16): : 5927 - 5936
  • [3] Cost-sensitive ensemble learning algorithm for multi-label classification problems
    [J]. Fu, Z.-L. (fzliang@netease.com), 1600, Science Press (40):
  • [4] Multi-label Ensemble Learning
    Shi, Chuan
    Kong, Xiangnan
    Yu, Philip S.
    Wang, Bai
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT III, 2011, 6913 : 223 - 239
  • [5] MLCE: A Multi-Label Crotch Ensemble Method for Multi-Label Classification
    Yao, Yuan
    Li, Yan
    Ye, Yunming
    Li, Xutao
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (04)
  • [6] EnML: Multi-label Ensemble Learning for Urdu Text Classification
    Mehmood, Faiza
    Shahzadi, Rehab
    Ghafoor, Hina
    Asim, Muhammad Nabeel
    Ghani, Muhammad Usman
    Mahmood, Waqar
    Dengel, Andreas
    [J]. ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2023, 22 (09)
  • [7] Ensemble methods for multi-label classification
    Rokach, Lior
    Schclar, Alon
    Itach, Ehud
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (16) : 7507 - 7523
  • [8] ENSEMBLE OF LABEL SPECIFIC FEATURES FOR MULTI-LABEL CLASSIFICATION
    Wei, Xiaoya
    Yu, Ziwei
    Zhang, Changqing
    Hu, Qinghua
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2018,
  • [9] Label Enhancement Manifold Learning Algorithm for Multi-label Image Classification
    Tan, Chao
    Ji, Genlin
    [J]. 2020 EIGHTH INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA (CBD 2020), 2020, : 96 - 102
  • [10] An Improved Convolutional Neural Network Algorithm for Multi-label Classification
    Wang, Xinsheng
    Sun, Lijun
    Wei, Zhihua
    [J]. 2018 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING (ICALIP), 2018, : 113 - 117