An Improved Multi-label Classification Ensemble Learning Algorithm

被引:0
|
作者
Fu, Zhongliang [1 ]
Wang, Lili [1 ]
Zhang, Danpu [1 ]
机构
[1] Chinese Acad Sci, Chengdu Inst Comp Applicat, Chengdu, Sichuan, Peoples R China
来源
关键词
multi-label classification problem; statistical learning; ensemble learning; AdaBoost algorithm; confidence;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an improved algorithm based on minimizing the weighted error of mistake labels and miss labels in multi-label classification ensemble learning algorithm. The new algorithm aims to avoid local optimum by redefining weak classifiers. This algorithm considers the correlations of labels under the precondition of ensuring the error drops with the number of weak classifiers increasing. This paper proposes two improved approaches; one introduces combinational coefficients when combining weak classifiers, another smooth the weak classifier's output to avoid local optimum. We discuss the basis of these modifications, and verify the effectiveness of these algorithms. The experimental results show that all the improved algorithms are effective, and less prone to over fitting.
引用
收藏
页码:243 / 252
页数:10
相关论文
共 50 条
  • [21] An Ensemble Deep Learning Architecture for Multi-label Classification on TI-RADS
    Duan, Xueli
    Duan, Shaobo
    Jiang, Pei
    Li, Runzhi
    Zhang, Ye
    Ma, Jingzhe
    Zhao, Hongling
    Dai, Honghua
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 576 - 582
  • [22] Learning multi-label scene classification
    Boutell, MR
    Luo, JB
    Shen, XP
    Brown, CM
    PATTERN RECOGNITION, 2004, 37 (09) : 1757 - 1771
  • [23] Dynamic ensemble pruning based on multi-label classification
    Markatopoulou, Fotini
    Tsoumakas, Grigorios
    Vlahavas, Ioannis
    NEUROCOMPUTING, 2015, 150 : 501 - 512
  • [24] Multi-label text classification with an ensemble feature space
    Tandon, Kushagri
    Chatterjee, Niladri
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (05) : 4425 - 4436
  • [25] WiseTag: An Ensemble Method for Multi-label Topic Classification
    Liang, Guanqing
    Kao, Hsiaohsien
    Leung, Cane Wing-Ki
    He, Chao
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2018, PT II, 2018, 11109 : 479 - 489
  • [26] Multi-label text classification with an ensemble feature space
    Tandon, Kushagri
    Chatterjee, Niladri
    Journal of Intelligent and Fuzzy Systems, 2022, 42 (05): : 4425 - 4436
  • [27] Weighted Ensemble Classification of Multi-label Data Streams
    Wang, Lulu
    Shen, Hong
    Tian, Hui
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2017, PT II, 2017, 10235 : 551 - 562
  • [28] Research and Implementation of a Multi-label Learning Algorithm for Chinese Text Classification
    Wang, Xun
    Liu, Huan
    Yang, Zeqing
    Chu, Jiahong
    Yao, Lan
    Zhao, ZhiBin
    Zuo, Bill
    2017 3RD INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING AND COMMUNICATIONS (BIGCOM), 2017, : 68 - 76
  • [29] A multi-label classification algorithm based on kernel extreme learning machine
    Luo, Fangfang
    Guo, Wenzhong
    Yu, Yuanlong
    Chen, Guolong
    NEUROCOMPUTING, 2017, 260 : 313 - 320
  • [30] A Novel Learning-Based PLST Algorithm for Multi-Label Classification
    Ebrahimi, Seyed Hossein Seyed
    Majidzadeh, Kambiz
    Gharehchopogh, Farhad Soleimanian
    IETE JOURNAL OF RESEARCH, 2024, 70 (05) : 4702 - 4720