A Geometric Approach to the Frobenius Unicity Conjecture for the Markoff Equation

被引:0
|
作者
Tornero, Jose M. [1 ]
机构
[1] Univ Seville, Fac Matemat, Dept Algebra, E-41080 Seville, Spain
关键词
Markoff equation; Frobenius unicity conjecture; integral points; hyperbolic Kac-Moody algebras; imaginary roots;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The long-standing Frobenius conjecture on the unicity of ordered solutions for the Markoff equation is translated in a very simple way into an arithmetic statement on the existence of integral points on certain hyperbolas. Some previous work of Kang and Melville can then be used for relating the problem to a statement concerning rank 2 symmetric hyperbolic Kac-Moody algebras.
引用
收藏
页码:595 / 600
页数:6
相关论文
共 50 条
  • [41] THE GEOMETRIC BOGOMOLOV CONJECTURE
    Cantat, Serge
    Gao, Ziyang
    Habegger, Philipp
    Xie, Junyi
    DUKE MATHEMATICAL JOURNAL, 2021, 170 (02) : 247 - 277
  • [42] Dedekind sums and generalizations of the Markoff diophantine equation
    Perrine, S
    JOURNAL OF NUMBER THEORY, 2002, 94 (02) : 224 - 247
  • [43] On the geometric Langlands conjecture
    Frenkel, E
    Gaitsgory, D
    Vilonen, K
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (02) : 367 - 417
  • [44] Counting Minimal Triples for a Generalized Markoff Equation
    Srinivasan, A.
    Calvo, L. A.
    EXPERIMENTAL MATHEMATICS, 2024,
  • [45] SOLUTIONS OF A GENERALIZED MARKOFF EQUATION IN FIBONACCI NUMBERS
    Hashim, Hayder Raheem
    Tengely, Szabolcs
    MATHEMATICA SLOVACA, 2020, 70 (05) : 1069 - 1078
  • [46] UNICITY OF MEROMORPHIC FUNCTIONS CONCERNING DIFFERENTIAL EQUATION
    Bhoosnurmath, Subhas S.
    Kulkarni, Milind N.
    Prabhu, Vaishali
    TAMKANG JOURNAL OF MATHEMATICS, 2007, 38 (02): : 153 - 157
  • [47] Frobenius Statistical Manifolds and Geometric Invariants
    Combe, Noemie
    Combe, Philippe
    Nencka, Hanna
    GEOMETRIC SCIENCE OF INFORMATION (GSI 2021), 2021, 12829 : 565 - 573
  • [48] A GEOMETRIC CHARACTERIZATION OF IMPRIMITIVE FROBENIUS GROUPS
    ANDRE, J
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1981, 51 : 120 - 135
  • [49] On unicity of meromorphic solutions to difference Painlevé equation
    Lü, Feng
    Wang, Yanfeng
    Lü, Weiran
    Mathematical Methods in the Applied Sciences, 2018, 41 (08): : 3093 - 3102