SOLUTIONS OF A GENERALIZED MARKOFF EQUATION IN FIBONACCI NUMBERS

被引:3
|
作者
Hashim, Hayder Raheem [1 ]
Tengely, Szabolcs [1 ]
机构
[1] Univ Debrecen, Inst Math, POB 400, H-4002 Debrecen, Hungary
关键词
Lucas sequences; Diophantine equations; Markoff equation;
D O I
10.1515/ms-2017-0414
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we find all the solutions (X, Y, Z) = (F-I, F-J, F-K), where F-I, F-J, and F-K represent nonzero Fibonacci numbers, satisfying a generalization of Markoff equation called the Jin-Schmidt equation: AX(2) + BY2 + CZ(2) = DXYZ + 1. (C) 2020 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:1069 / 1078
页数:10
相关论文
共 50 条
  • [1] SOLUTIONS OF THE MARKOFF EQUATION IN TRIBONACCI NUMBERS
    Hashim, Hayder R.
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2023, 27 (555): : 71 - 79
  • [2] THE MARKOFF-FIBONACCI NUMBERS
    Srinivasan, Anitha
    FIBONACCI QUARTERLY, 2020, 58 (05): : 222 - 228
  • [3] An Equation Related to k-Generalized Fibonacci Numbers
    Marques, Diego
    Trojovsky, Pavel
    UTILITAS MATHEMATICA, 2016, 101 : 79 - 89
  • [4] A Quadratic Diophantine Equation Involving Generalized Fibonacci Numbers
    Chaves, Ana Paula
    Trojovsky, Pavel
    MATHEMATICS, 2020, 8 (06)
  • [5] ON A GENERALIZED PELL EQUATION AND A CHARACTERIZATION OF THE FIBONACCI AND LUCAS NUMBERS
    Euler, Russell
    Sadek, Jawad
    FIBONACCI QUARTERLY, 2014, 52 (03): : 243 - 246
  • [6] GENERALIZED FIBONACCI NUMBERS
    DRESEL, LAG
    FIBONACCI QUARTERLY, 1986, 24 (02): : 184 - 184
  • [7] GENERALIZED FIBONACCI NUMBERS
    MILLER, MD
    AMERICAN MATHEMATICAL MONTHLY, 1971, 78 (10): : 1108 - &
  • [8] GENERALIZED FIBONACCI NUMBERS
    SILVA, A
    HOGGATT, VE
    FIBONACCI QUARTERLY, 1980, 18 (04): : 290 - 300
  • [9] RATIOS OF GENERALIZED FIBONACCI NUMBERS
    Beardon, A. F.
    FIBONACCI QUARTERLY, 2022, 60 (03): : 235 - 237
  • [10] ON THE GENERALIZED GAUSSIAN FIBONACCI NUMBERS
    Lee, Gwang Yeon
    Asci, Mustafa
    ARS COMBINATORIA, 2017, 132 : 147 - 157