A Geometric Approach to the Frobenius Unicity Conjecture for the Markoff Equation

被引:0
|
作者
Tornero, Jose M. [1 ]
机构
[1] Univ Seville, Fac Matemat, Dept Algebra, E-41080 Seville, Spain
关键词
Markoff equation; Frobenius unicity conjecture; integral points; hyperbolic Kac-Moody algebras; imaginary roots;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The long-standing Frobenius conjecture on the unicity of ordered solutions for the Markoff equation is translated in a very simple way into an arithmetic statement on the existence of integral points on certain hyperbolas. Some previous work of Kang and Melville can then be used for relating the problem to a statement concerning rank 2 symmetric hyperbolic Kac-Moody algebras.
引用
收藏
页码:595 / 600
页数:6
相关论文
共 50 条
  • [21] A Hyper-Geometric Approach to the BMV-Conjecture
    Michael Drmota
    Walter Schachermayer
    Josef Teichmann
    Monatshefte für Mathematik, 2005, 146 : 179 - 201
  • [22] UN-BOUNDEDNESS CONJECTURE FOR STRONG UNICITY CONSTANTS
    SCHMIDT, D
    JOURNAL OF APPROXIMATION THEORY, 1978, 24 (03) : 216 - 223
  • [23] The toric Frobenius morphism and a conjecture of Orlov
    Matthew R. Ballard
    Alexander Duncan
    Patrick K. McFaddin
    European Journal of Mathematics, 2019, 5 : 640 - 645
  • [24] On a conjecture by Wilf about the Frobenius number
    Alessio Moscariello
    Alessio Sammartano
    Mathematische Zeitschrift, 2015, 280 : 47 - 53
  • [25] On a conjecture concerning the Frobenius norm of matrices
    Zou, Limin
    LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (01): : 27 - 31
  • [26] The toric Frobenius morphism and a conjecture of Orlov
    Ballard, Matthew R.
    Duncan, Alexander
    McFaddin, Patrick K.
    EUROPEAN JOURNAL OF MATHEMATICS, 2019, 5 (03) : 640 - 645
  • [27] Fujita's conjecture and Frobenius amplitude
    Keeler, Dennis S.
    AMERICAN JOURNAL OF MATHEMATICS, 2008, 130 (05) : 1327 - 1336
  • [28] On a conjecture by Wilf about the Frobenius number
    Moscariello, Alessio
    Sammartano, Alessio
    MATHEMATISCHE ZEITSCHRIFT, 2015, 280 (1-2) : 47 - 53
  • [29] MARKOFF-ROSENBERGER TRIPLES IN GEOMETRIC PROGRESSION
    Gonzalez-Jimenez, E.
    ACTA MATHEMATICA HUNGARICA, 2014, 142 (01) : 231 - 243
  • [30] SOLUTIONS OF THE MARKOFF EQUATION IN TRIBONACCI NUMBERS
    Hashim, Hayder R.
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2023, 27 (555): : 71 - 79