A hybrid ensemble learning approach to star-galaxy classification

被引:37
|
作者
Kim, Edward J. [1 ]
Brunner, Robert J. [2 ,3 ,4 ]
Kind, Matias Carrasco [2 ,4 ]
机构
[1] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Astron, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Stat, Champaign, IL 61820 USA
[4] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA
基金
美国国家科学基金会; 美国安德鲁·梅隆基金会;
关键词
methods: data analysis; methods: statistical; surveys; stars: statistics; galaxies: statistics; PHOTOMETRIC REDSHIFT PDFS; VLT DEEP SURVEY; DATA RELEASE; CFHTLENS; INFORMATION; SPECTRA; CATALOG; IMAGES;
D O I
10.1093/mnras/stv1608
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
There exist a variety of star-galaxy classification techniques, each with their own strengths and weaknesses. In this paper, we present a novelmeta-classification framework that combines and fully exploits different techniques to produce a more robust star-galaxy classification. To demonstrate this hybrid, ensemble approach, we combine a purely morphological classifier, a supervised machine learning method based on random forest, an unsupervised machine learning method based on self-organizing maps, and a hierarchical Bayesian template-fitting method. Using data from the CFHTLenS survey (Canada-France-Hawaii Telescope Lensing Survey), we consider different scenarios: when a high-quality training set is available with spectroscopic labels from DEEP2 (Deep Extragalactic Evolutionary Probe Phase 2), SDSS (Sloan Digital Sky Survey), VIPERS (VIMOS Public Extragalactic Redshift Survey), and VVDS (VIMOS VLT Deep Survey), and when the demographics of sources in a low-quality training set do not match the demographics of objects in the test data set. We demonstrate that our Bayesian combination technique improves the overall performance over any individual classification method in these scenarios. Thus, strategies that combine the predictions of different classifiersmay prove to be optimal in currently ongoing and forthcoming photometric surveys, such as the Dark Energy Survey and the Large Synoptic Survey Telescope.
引用
收藏
页码:507 / 521
页数:15
相关论文
共 50 条
  • [1] A Bayesian approach to star-galaxy classification
    Henrion, Marc
    Mortlock, Daniel J.
    Hand, David J.
    Gandy, Axel
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 412 (04) : 2286 - 2302
  • [2] The miniJPAS survey: star-galaxy classification using machine learning
    Baqui, P. O.
    Marra, V.
    Casarini, L.
    Angulo, R.
    Diaz-Garcia, L. A.
    Hernandez-Monteagudo, C.
    Lopes, P. A. A.
    Lopez-Sanjuan, C.
    Muniesa, D.
    Placco, V. M.
    Quartin, M.
    Queiroz, C.
    Sobral, D.
    Solano, E.
    Tempel, E.
    Varela, J.
    Vilchez, J. M.
    Abramo, R.
    Alcaniz, J.
    Benitez, N.
    Bonoli, S.
    Carneiro, S.
    Cenarro, A. J.
    Cristobal-Hornillos, D.
    de Amorim, A. L.
    de Oliveira, C. M.
    Dupke, R.
    Ederoclite, A.
    Gonzalez Delgado, R. M.
    Marin-Franch, A.
    Moles, M.
    Ramio, H. Vazquez
    Sodre, L.
    Taylor, K.
    [J]. ASTRONOMY & ASTROPHYSICS, 2021, 645 (645)
  • [3] STAR-GALAXY CLASSIFICATION USING MACHINE LEARNING ALGORITHMS AND DEEP LEARNING
    Savyanavar, Amit Sadanand
    Mhala, Nikhil
    Sutar, Shiv H.
    [J]. INTERNATIONAL JOURNAL ON INFORMATION TECHNOLOGIES AND SECURITY, 2023, 15 (02): : 87 - 96
  • [4] Morphological Star-Galaxy Separation
    Slater, Colin T.
    Ivezic, Zeljko
    Lupton, Robert H.
    [J]. ASTRONOMICAL JOURNAL, 2020, 159 (02):
  • [5] A difference boosting neural network for automated star-galaxy classification
    Philip, NS
    Wadadekar, Y
    Kembhavi, A
    Joseph, KB
    [J]. ASTRONOMY & ASTROPHYSICS, 2002, 385 (03) : 1119 - 1126
  • [6] Preparation for CSST:Star-galaxy Classification using a Rotationally Invariant Supervised Machine Learning Method
    Shiliang Zhang
    Guanwen Fang
    Jie Song
    Ran Li
    Yizhou Gu
    Zesen Lin
    Chichun Zhou
    Yao Dai
    Xu Kong
    [J]. Research in Astronomy and Astrophysics, 2024, 24 (09) : 138 - 148
  • [7] STAR-GALAXY CLASSIFICATION IN MULTI-BAND OPTICAL IMAGING
    Fadely, Ross
    Hogg, David W.
    Willman, Beth
    [J]. ASTROPHYSICAL JOURNAL, 2012, 760 (01):
  • [8] Star-galaxy classification using deep convolutional neural networks
    Kim, Edward J.
    Brunner, Robert J.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 464 (04) : 4463 - 4475
  • [9] Preparation for CSST: Star-galaxy Classification using a Rotationally Invariant Supervised Machine Learning Method
    Zhang, Shiliang
    Fang, Guanwen
    Song, Jie
    Li, Ran
    Gu, Yizhou
    Lin, Zesen
    Zhou, Chichun
    Dai, Yao
    Kong, Xu
    [J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2024, 24 (09)
  • [10] Star-Galaxy Image Separation with Computationally Efficient Gaussian Process Classification
    Muyskens, Amanda L.
    Goumiri, Imene R.
    Priest, Benjamin W.
    Schneider, Michael D.
    Armstrong, Robert E.
    Bernstein, Jason
    Dana, Ryan
    [J]. ASTRONOMICAL JOURNAL, 2022, 163 (04):