Preparation for CSST:Star-galaxy Classification using a Rotationally Invariant Supervised Machine Learning Method

被引:0
|
作者
Shiliang Zhang [1 ]
Guanwen Fang [1 ]
Jie Song [2 ,3 ]
Ran Li [4 ]
Yizhou Gu [5 ]
Zesen Lin [6 ]
Chichun Zhou [7 ]
Yao Dai [1 ]
Xu Kong [2 ,3 ]
机构
[1] Institute of Astronomy and Astrophysics,Anqing Normal University
[2] Deep Space Exploration Laboratory/Department of Astronomy,University of Science and Technology of China
[3] School of Astronomy and Space Science,University of Science and Technology of China
[4] National Astronomical Observatories,Chinese Academy of Sciences
[5] Tsung-Dao Lee Institute and Key Laboratory for Particle Physics,Astrophysics and Cosmology,Ministry of Education,Shanghai Jiao Tong University
[6] Department of Physics,The Chinese University of Hong Kong
[7] School of Engineering,Dali
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Most existing star-galaxy classifiers depend on the reduced information from catalogs,necessitating careful data processing and feature extraction.In this study,we employ a supervised machine learning method (GoogLeNet) to automatically classify stars and galaxies in the COSMOS field.Unlike traditional machine learning methods,we introduce several preprocessing techniques,including noise reduction and the unwrapping of denoised images in polar coordinates,applied to our carefully selected samples of stars and galaxies.By dividing the selected samples into training and validation sets in an 8:2 ratio,we evaluate the performance of the GoogLeNet model in distinguishing between stars and galaxies.The results indicate that the GoogLeNet model is highly effective,achieving accuracies of 99.6%and 99.9%for stars and galaxies,respectively.Furthermore,by comparing the results with and without preprocessing,we find that preprocessing can significantly improve classification accuracy(by approximately 2.0%to 6.0%) when the images are rotated.In preparation for the future launch of the China Space Station Telescope (CSST),we also evaluate the performance of the GoogLeNet model on the CSST simulation data.These results demonstrate a high level of accuracy (approximately 99.8%),indicating that this model can be effectively utilized for future observations with the CSST.
引用
下载
收藏
页码:138 / 148
页数:11
相关论文
共 50 条
  • [1] Preparation for CSST: Star-galaxy Classification using a Rotationally Invariant Supervised Machine Learning Method
    Zhang, Shiliang
    Fang, Guanwen
    Song, Jie
    Li, Ran
    Gu, Yizhou
    Lin, Zesen
    Zhou, Chichun
    Dai, Yao
    Kong, Xu
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2024, 24 (09)
  • [2] The miniJPAS survey: star-galaxy classification using machine learning
    Baqui, P. O.
    Marra, V.
    Casarini, L.
    Angulo, R.
    Diaz-Garcia, L. A.
    Hernandez-Monteagudo, C.
    Lopes, P. A. A.
    Lopez-Sanjuan, C.
    Muniesa, D.
    Placco, V. M.
    Quartin, M.
    Queiroz, C.
    Sobral, D.
    Solano, E.
    Tempel, E.
    Varela, J.
    Vilchez, J. M.
    Abramo, R.
    Alcaniz, J.
    Benitez, N.
    Bonoli, S.
    Carneiro, S.
    Cenarro, A. J.
    Cristobal-Hornillos, D.
    de Amorim, A. L.
    de Oliveira, C. M.
    Dupke, R.
    Ederoclite, A.
    Gonzalez Delgado, R. M.
    Marin-Franch, A.
    Moles, M.
    Ramio, H. Vazquez
    Sodre, L.
    Taylor, K.
    ASTRONOMY & ASTROPHYSICS, 2021, 645 (645)
  • [3] STAR-GALAXY CLASSIFICATION USING MACHINE LEARNING ALGORITHMS AND DEEP LEARNING
    Savyanavar, Amit Sadanand
    Mhala, Nikhil
    Sutar, Shiv H.
    INTERNATIONAL JOURNAL ON INFORMATION TECHNOLOGIES AND SECURITY, 2023, 15 (02): : 87 - 96
  • [4] Automatic Classification of Galaxy Morphology: A Rotationally-invariant Supervised Machine-learning Method Based on the Unsupervised Machine-learning Data Set
    Fang, GuanWen
    Ba, Shuo
    Gu, Yizhou
    Lin, Zesen
    Hou, Yuejie
    Qin, Chenxin
    Zhou, Chichun
    Xu, Jun
    Dai, Yao
    Song, Jie
    Kong, Xu
    ASTRONOMICAL JOURNAL, 2023, 165 (02):
  • [5] A hybrid ensemble learning approach to star-galaxy classification
    Kim, Edward J.
    Brunner, Robert J.
    Kind, Matias Carrasco
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 453 (01) : 507 - 521
  • [6] Scientific preparation for CSST: classification of galaxy and nebula/star cluster based on deep learning
    Zhang, Yuquan
    Cao, Zhong
    Wang, Feng
    Lam, Man, I
    Deng, Hui
    Mei, Ying
    Tan, Lei
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 527 (04) : 11935 - 11944
  • [7] Star-galaxy classification using deep convolutional neural networks
    Kim, Edward J.
    Brunner, Robert J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 464 (04) : 4463 - 4475
  • [8] Star-Galaxy Classification Using Data Mining Techniques with Considerations for Unbalanced Datasets
    O'Keefe, Peter J.
    Gowanlock, Michael G.
    McConnell, Sabine M.
    Patton, David R.
    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XVIII, 2009, 411 : 318 - +
  • [9] AutoSourceID-Classifier Star-galaxy classification using a convolutional neural network with spatial information
    Stoppa, F.
    Bhattacharyya, S.
    de Austri, R. Ruiz
    Vreeswijk, P.
    Caron, S.
    Zaharijas, G.
    Bloemen, S.
    Principe, G.
    Malyshev, D.
    Vodeb, V.
    Groot, P. J.
    Cator, E.
    Nelemans, G.
    ASTRONOMY & ASTROPHYSICS, 2023, 680
  • [10] Galaxy morphology classification using automated machine learning
    Reza, Moonzarin
    ASTRONOMY AND COMPUTING, 2021, 37