STAR-GALAXY CLASSIFICATION IN MULTI-BAND OPTICAL IMAGING

被引:48
|
作者
Fadely, Ross [1 ]
Hogg, David W. [2 ,3 ]
Willman, Beth [1 ]
机构
[1] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA
[2] NYU, Dept Phys, Ctr Cosmol & Particle Phys, New York, NY 10003 USA
[3] Max Planck Inst Astron, D-69117 Heidelberg, Germany
来源
ASTROPHYSICAL JOURNAL | 2012年 / 760卷 / 01期
基金
美国国家科学基金会;
关键词
catalogs; galaxies: general; Galaxy: stellar content; Galaxy: structure; methods: data analysis; methods: statistical; stars: general; surveys; EVOLUTION SURVEY COSMOS; PHOTOMETRIC REDSHIFTS; LEGACY SURVEY; FIELD; 1ST; LIBRARY; SELECTION; SPECTRA; SAMPLE; SDSS;
D O I
10.1088/0004-637X/760/1/15
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Ground-based optical surveys such as PanSTARRS, DES, and LSST will produce large catalogs to limiting magnitudes of r greater than or similar to 24. Star-galaxy separation poses a major challenge to such surveys because galaxies-even very compact galaxies-outnumber halo stars at these depths. We investigate photometric classification techniques on stars and galaxies with intrinsic FWHM < 0.2 arcsec. We consider unsupervised spectral energy distribution template fitting and supervised, data-driven support vector machines (SVMs). For template fitting, we use a maximum likelihood (ML) method and a new hierarchical Bayesian (HB) method, which learns the prior distribution of template probabilities from the data. SVM requires training data to classify unknown sources; ML and HB do not. We consider (1) a best-case scenario (SVMbest) where the training data are (unrealistically) a random sampling of the data in both signal-to-noise and demographics and (2) a more realistic scenario where training is done on higher signal-to-noise data (SVMreal) at brighter apparent magnitudes. Testing with COSMOS ugriz data, we find that HB outperforms ML, delivering similar to 80% completeness, with purity of similar to 60%-90% for both stars and galaxies. We find that no algorithm delivers perfect performance and that studies of metal-poor main-sequence turnoff stars may be challenged by poor star-galaxy separation. Using the Receiver Operating Characteristic curve, we find a best-to-worst ranking of SVMbest, HB, ML, and SVMreal. We conclude, therefore, that a well-trained SVM will outperform template-fitting methods. However, a normally trained SVM performs worse. Thus, HB template fitting may prove to be the optimal classification method in future surveys.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] The PAU survey: star-galaxy classification with multi narrow-band data
    Cabayol, L.
    Sevilla-Noarbe, I.
    Fernandez, E.
    Carretero, J.
    Eriksen, M.
    Serrano, S.
    Alarcon, A.
    Amara, A.
    Casas, R.
    Castander, F. J.
    De Vicente, J.
    Folger, M.
    Garcia-Bellido, J.
    Gaztanaga, E.
    Hoekstra, H.
    Miquel, R.
    Padilla, C.
    Sanchez, E.
    Stothert, L.
    Tallada, P.
    Tortorelli, L.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 483 (01) : 529 - 539
  • [2] A Bayesian approach to star-galaxy classification
    Henrion, Marc
    Mortlock, Daniel J.
    Hand, David J.
    Gandy, Axel
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 412 (04) : 2286 - 2302
  • [3] A hybrid ensemble learning approach to star-galaxy classification
    Kim, Edward J.
    Brunner, Robert J.
    Kind, Matias Carrasco
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 453 (01) : 507 - 521
  • [4] Morphological Star-Galaxy Separation
    Slater, Colin T.
    Ivezic, Zeljko
    Lupton, Robert H.
    [J]. ASTRONOMICAL JOURNAL, 2020, 159 (02):
  • [5] A difference boosting neural network for automated star-galaxy classification
    Philip, NS
    Wadadekar, Y
    Kembhavi, A
    Joseph, KB
    [J]. ASTRONOMY & ASTROPHYSICS, 2002, 385 (03) : 1119 - 1126
  • [6] The miniJPAS survey: star-galaxy classification using machine learning
    Baqui, P. O.
    Marra, V.
    Casarini, L.
    Angulo, R.
    Diaz-Garcia, L. A.
    Hernandez-Monteagudo, C.
    Lopes, P. A. A.
    Lopez-Sanjuan, C.
    Muniesa, D.
    Placco, V. M.
    Quartin, M.
    Queiroz, C.
    Sobral, D.
    Solano, E.
    Tempel, E.
    Varela, J.
    Vilchez, J. M.
    Abramo, R.
    Alcaniz, J.
    Benitez, N.
    Bonoli, S.
    Carneiro, S.
    Cenarro, A. J.
    Cristobal-Hornillos, D.
    de Amorim, A. L.
    de Oliveira, C. M.
    Dupke, R.
    Ederoclite, A.
    Gonzalez Delgado, R. M.
    Marin-Franch, A.
    Moles, M.
    Ramio, H. Vazquez
    Sodre, L.
    Taylor, K.
    [J]. ASTRONOMY & ASTROPHYSICS, 2021, 645 (645)
  • [7] Star-galaxy classification using deep convolutional neural networks
    Kim, Edward J.
    Brunner, Robert J.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 464 (04) : 4463 - 4475
  • [8] Star-Galaxy Image Separation with Computationally Efficient Gaussian Process Classification
    Muyskens, Amanda L.
    Goumiri, Imene R.
    Priest, Benjamin W.
    Schneider, Michael D.
    Armstrong, Robert E.
    Bernstein, Jason
    Dana, Ryan
    [J]. ASTRONOMICAL JOURNAL, 2022, 163 (04):
  • [9] Fuzzy classifier for star-galaxy separation
    Mähönen, P
    Frantti, T
    [J]. ASTROPHYSICAL JOURNAL, 2000, 541 (01): : 261 - 263
  • [10] STAR-GALAXY CLASSIFICATION USING MACHINE LEARNING ALGORITHMS AND DEEP LEARNING
    Savyanavar, Amit Sadanand
    Mhala, Nikhil
    Sutar, Shiv H.
    [J]. INTERNATIONAL JOURNAL ON INFORMATION TECHNOLOGIES AND SECURITY, 2023, 15 (02): : 87 - 96