Morphological Star-Galaxy Separation

被引:8
|
作者
Slater, Colin T. [1 ]
Ivezic, Zeljko [1 ]
Lupton, Robert H. [2 ]
机构
[1] Univ Washington, Dept Astron, Box 351580, Seattle, WA 98195 USA
[2] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
来源
ASTRONOMICAL JOURNAL | 2020年 / 159卷 / 02期
基金
美国国家科学基金会;
关键词
Observational astronomy; CCD observation; Astronomical methods; SDSS; CLASSIFICATION; RELEASE; COSMOS;
D O I
10.3847/1538-3881/ab6166
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We discuss the statistical foundations of morphological star-galaxy separation. We show that many of the star-galaxy separation metrics in common use today (e.g., by Sloan Digital Sky Survey or SExtractor) are closely related both to each other, and to the model odds ratio derived in a Bayesian framework by Sebok. While the scaling of these algorithms with the noise properties of the sources varies, these differences do not strongly differentiate their performance. We construct a model of the performance of a star-galaxy separator in a realistic survey to understand the impact of observational signal-to-noise ratio (S/N) (or equivalently, 5 sigma limiting depth) and seeing on classification performance. The model quantitatively demonstrates that, assuming realistic densities and angular sizes of stars and galaxies, 10% worse seeing can be compensated for by approximately 0.4 mag deeper data to achieve the same star-galaxy classification performance. We discuss how to probabilistically combine multiple measurements, either of the same type (e.g., subsequent exposures), or differing types (e.g., multiple bandpasses), or differing methodologies (e.g., morphological and color-based classification). These methods are increasingly important for observations at faint magnitudes, where the rapidly rising number density of small galaxies makes star-galaxy classification a challenging problem. However, because of the significant role that the S/N plays in resolving small galaxies, surveys with large-aperture telescopes, such as LSST, will continue to see improving star-galaxy separation as they push to these fainter magnitudes.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Fuzzy classifier for star-galaxy separation
    Mähönen, P
    Frantti, T
    [J]. ASTROPHYSICAL JOURNAL, 2000, 541 (01): : 261 - 263
  • [2] Star-galaxy separation in the AKARI NEP deep field
    Solarz, A.
    Pollo, A.
    Takeuchi, T. T.
    Pepiak, A.
    Matsuhara, H.
    Wada, T.
    Oyabu, S.
    Takagi, T.
    Goto, T.
    Ohyama, Y.
    Pearson, C. P.
    Hanami, H.
    Ishigaki, T.
    [J]. ASTRONOMY & ASTROPHYSICS, 2012, 541
  • [3] Galaxy And Mass Assembly (GAMA): the input catalogue and star-galaxy separation
    Baldry, I. K.
    Robotham, A. S. G.
    Hill, D. T.
    Driver, S. P.
    Liske, J.
    Norberg, P.
    Bamford, S. P.
    Hopkins, A. M.
    Loveday, J.
    Peacock, J. A.
    Cameron, E.
    Croom, S. M.
    Cross, N. J. G.
    Doyle, I. F.
    Dye, S.
    Frenk, C. S.
    Jones, D. H.
    van Kampen, E.
    Kelvin, L. S.
    Nichol, R. C.
    Parkinson, H. R.
    Popescu, C. C.
    Prescott, M.
    Sharp, R. G.
    Sutherland, W. J.
    Thomas, D.
    Tuffs, R. J.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 404 (01) : 86 - 100
  • [4] Star-Galaxy Image Separation with Computationally Efficient Gaussian Process Classification
    Muyskens, Amanda L.
    Goumiri, Imene R.
    Priest, Benjamin W.
    Schneider, Michael D.
    Armstrong, Robert E.
    Bernstein, Jason
    Dana, Ryan
    [J]. ASTRONOMICAL JOURNAL, 2022, 163 (04):
  • [5] PREPARING FOR ADVANCED LIGO: A STAR-GALAXY SEPARATION CATALOG FOR THE PALOMAR TRANSIENT FACTORY
    Miller, A. A.
    Kulkarni, M. K.
    Cao, Y.
    Laher, R. R.
    Masci, F. J.
    Surace, J. A.
    [J]. ASTRONOMICAL JOURNAL, 2017, 153 (02):
  • [6] A Bayesian approach to star-galaxy classification
    Henrion, Marc
    Mortlock, Daniel J.
    Hand, David J.
    Gandy, Axel
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 412 (04) : 2286 - 2302
  • [7] Automated star-galaxy discrimination for large surveys
    Cortiglioni, F
    Mähönen, P
    Hakala, P
    Frantti, T
    [J]. ASTROPHYSICAL JOURNAL, 2001, 556 (02): : 937 - 943
  • [8] Star-galaxy separation strategies for WISE-2MASS all-sky infrared galaxy catalogues
    Kovacs, Andras
    Szapudi, Istvan
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 448 (02) : 1305 - 1313
  • [9] The Digitized Second Palomar Observatory Sky Survey (DPOSS). III. Star-galaxy separation
    Odewahn, SC
    de Carvalho, RR
    Gal, RR
    Djorgovski, SG
    Brunner, R
    Mahabal, A
    Lopes, PAA
    Moreira, JLK
    Stalder, B
    [J]. ASTRONOMICAL JOURNAL, 2004, 128 (06): : 3092 - 3107
  • [10] A hybrid ensemble learning approach to star-galaxy classification
    Kim, Edward J.
    Brunner, Robert J.
    Kind, Matias Carrasco
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 453 (01) : 507 - 521