Integrable and superintegrable systems with spin

被引:32
|
作者
Winternitz, Pavel [1 ]
Yurdusen, Ismet [1 ]
机构
[1] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
SYMMETRIES;
D O I
10.1063/1.2360042
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A system of two particles with spin s=0 and s=1/2, respectively, moving in a plane is considered. It is shown that such a system with a nontrivial spin-orbit interaction can allow an eight dimensional Lie algebra of first-order integrals of motion. The Pauli equation is solved in this superintegrable case and reduced to a system of ordinary differential equations when only one first-order integral exists. (c) 2006 American Institute of Physics.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Superintegrable systems with spin induced by co-algebra symmetry
    Riglioni, D.
    Gingras, O.
    Winternitz, P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (12)
  • [22] Superintegrable systems with spin and second-order integrals of motion
    Desilets, Jean-Francois
    Winternitz, Pavel
    Yurdusen, Ismet
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (47)
  • [23] Cluster integrable systems and spin chains
    Marshakov, A.
    Semenyakin, M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (10)
  • [24] Cluster integrable systems and spin chains
    A. Marshakov
    M. Semenyakin
    Journal of High Energy Physics, 2019
  • [25] Integrable impurity spin ladder systems
    Tonel, AP
    Foerster, A
    Guan, XW
    Links, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (02): : 359 - 370
  • [26] Heisenberg-Integrable Spin Systems
    Robin Steinigeweg
    Heinz-Jürgen Schmidt
    Mathematical Physics, Analysis and Geometry, 2009, 12 : 19 - 45
  • [27] Heisenberg-Integrable Spin Systems
    Steinigeweg, Robin
    Schmidt, Heinz-Juergen
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2009, 12 (01) : 19 - 45
  • [28] SUPERINTEGRABLE SYSTEMS
    KUPERSHMIDT, B
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1984, 81 (20): : 6562 - 6563
  • [29] Family of nonstandard integrable and superintegrable classical Hamiltonian systems in non-vanishing magnetic fields
    Hoque, Md Fazlul
    Snobl, Libor
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (16)
  • [30] Confinement of an electron in a non-homogeneous magnetic field: Integrable vs superintegrable quantum systems
    Contreras-Astorga, A.
    Negro, J.
    Tristao, S.
    PHYSICS LETTERS A, 2016, 380 (1-2) : 48 - 55