Integrable and superintegrable systems with spin

被引:32
|
作者
Winternitz, Pavel [1 ]
Yurdusen, Ismet [1 ]
机构
[1] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
SYMMETRIES;
D O I
10.1063/1.2360042
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A system of two particles with spin s=0 and s=1/2, respectively, moving in a plane is considered. It is shown that such a system with a nontrivial spin-orbit interaction can allow an eight dimensional Lie algebra of first-order integrals of motion. The Pauli equation is solved in this superintegrable case and reduced to a system of ordinary differential equations when only one first-order integral exists. (c) 2006 American Institute of Physics.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] On Euler superintegrable systems
    Grigoryev, Yu A.
    Khudobakhshov, V. A.
    Tsiganov, A. V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (07)
  • [42] On superintegrable monopole systems
    Hoque, Md Fazlul
    Marquette, Ian
    Zhang, Yao-Zhong
    XXV INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-25), 2018, 965
  • [43] The Drach superintegrable systems
    Tsiganov, AV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (41): : 7407 - 7422
  • [44] Quasi-integrable and superintegrable systems from a 'deformed-mass' two-photon algebra
    Herranz, FJ
    Ballesteros, A
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2000, 50 (11) : 1239 - 1244
  • [45] Quantum superintegrable systems with arbitrary spin: Exact solution with deformed oscillator formalism
    Alizadeh, Z.
    Panahi, H.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2014, 129 (06):
  • [46] Perturbations of Superintegrable Systems
    Heinz Hanßmann
    Acta Applicandae Mathematicae, 2015, 137 : 79 - 95
  • [47] Integrable spin systems with long-range interactions
    Hikami, Kazuhiro
    Kulish, P.P.
    Wadati, Miki
    Chaos, solitons and fractals, 1992, 2 (05): : 543 - 550
  • [48] A Class of Integrable Spin Calogero-Moser Systems
    Luen-Chau Li
    Ping Xu
    Communications in Mathematical Physics, 2002, 231 : 257 - 286
  • [49] Supersymmetric quantum spin chains and classical integrable systems
    Zengo Tsuboi
    Anton Zabrodin
    Andrei Zotov
    Journal of High Energy Physics, 2015
  • [50] Supersymmetric quantum spin chains and classical integrable systems
    Tsuboi, Zengo
    Zabrodin, Anton
    Zotov, Andrei
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (05):