Cluster integrable systems and spin chains

被引:0
|
作者
A. Marshakov
M. Semenyakin
机构
[1] Center for Advanced Studies,
[2] Skoltech,undefined
[3] Faculty of Mathematics,undefined
[4] NRU HSE,undefined
[5] Institute for Theoretical and Experimental Physics,undefined
[6] Theory Department of Lebedev Physics Institute,undefined
关键词
Quantum Groups; Supersymmetric Gauge Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss relation between the cluster integrable systems and spin chains in the context of their correspondence with 5d supersymmetric gauge theories. It is shown that glN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{gl}}_N $$\end{document} XXZ-type spin chain on M sites is isomorphic to a cluster integrable system with N × M rectangular Newton polygon and N × M fundamental domain of a ‘fence net’ bipartite graph. The Casimir functions of the Poisson bracket, labeled by the zig-zag paths on the graph, correspond to the inhomogeneities, on-site Casimirs and twists of the chain, supplemented by total spin. The symmetricity of cluster formulation implies natural spectral duality, relating glN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{gl}}_N $$\end{document} -chain on M sites with the glM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{gl}}_M $$\end{document} -chain on N sites. For these systems we construct explicitly a subgroup of the cluster mapping class group GQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{G}}_{\mathcal{Q}} $$\end{document} and show that it acts by permutations of zig-zags and, as a consequence, by permutations of twists and inhomogeneities. Finally, we derive Hirota bilinear equations, describing dynamics of the tau-functions or A-cluster variables under the action of some generators of GQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{G}}_{\mathcal{Q}} $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Cluster integrable systems and spin chains
    Marshakov, A.
    Semenyakin, M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (10)
  • [2] Supersymmetric quantum spin chains and classical integrable systems
    Zengo Tsuboi
    Anton Zabrodin
    Andrei Zotov
    Journal of High Energy Physics, 2015
  • [3] Supersymmetric quantum spin chains and classical integrable systems
    Tsuboi, Zengo
    Zabrodin, Anton
    Zotov, Andrei
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (05):
  • [4] COMPLETELY INTEGRABLE SPIN CHAINS
    BOROVIK, AE
    POPKOV, VY
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1990, 98 (01): : 316 - 333
  • [5] Integrable multiparametric spin chains
    Foerster, A
    Links, J
    Roditi, I
    5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 60 - 62
  • [6] Spin conductivity in almost integrable spin chains
    Jung, Peter
    Rosch, Achim
    PHYSICAL REVIEW B, 2007, 76 (24)
  • [7] Integrable systems on so(4) related to XXX spin chains with boundaries
    Tsiganov, AV
    Goremykin, OV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (17): : 4843 - 4849
  • [8] Integrable spin chains and the Clifford group
    Jones, Nick G.
    Linden, Noah
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (10)
  • [9] Integrable spin chains and scattering amplitudes
    Bartels, J.
    Lipatov, L. N.
    Prygarin, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (45)
  • [10] Integrable multiparametric quantum spin chains
    Foerster, A
    Links, J
    Roditi, I
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (02): : 687 - 695