Cluster integrable systems and spin chains

被引:0
|
作者
A. Marshakov
M. Semenyakin
机构
[1] Center for Advanced Studies,
[2] Skoltech,undefined
[3] Faculty of Mathematics,undefined
[4] NRU HSE,undefined
[5] Institute for Theoretical and Experimental Physics,undefined
[6] Theory Department of Lebedev Physics Institute,undefined
关键词
Quantum Groups; Supersymmetric Gauge Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss relation between the cluster integrable systems and spin chains in the context of their correspondence with 5d supersymmetric gauge theories. It is shown that glN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{gl}}_N $$\end{document} XXZ-type spin chain on M sites is isomorphic to a cluster integrable system with N × M rectangular Newton polygon and N × M fundamental domain of a ‘fence net’ bipartite graph. The Casimir functions of the Poisson bracket, labeled by the zig-zag paths on the graph, correspond to the inhomogeneities, on-site Casimirs and twists of the chain, supplemented by total spin. The symmetricity of cluster formulation implies natural spectral duality, relating glN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{gl}}_N $$\end{document} -chain on M sites with the glM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{gl}}_M $$\end{document} -chain on N sites. For these systems we construct explicitly a subgroup of the cluster mapping class group GQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{G}}_{\mathcal{Q}} $$\end{document} and show that it acts by permutations of zig-zags and, as a consequence, by permutations of twists and inhomogeneities. Finally, we derive Hirota bilinear equations, describing dynamics of the tau-functions or A-cluster variables under the action of some generators of GQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{G}}_{\mathcal{Q}} $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] The quench action approach in finite integrable spin chains
    Alba, Vincenzo
    Calabrese, Pasquale
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
  • [42] Correlation functions of integrable O(n) spin chains
    Ribeiro, G. A. P.
    NUCLEAR PHYSICS B, 2020, 957
  • [43] A new class of completely integrable quantum spin chains
    Prosen, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (21): : L397 - L403
  • [44] Dimers, networks, and cluster integrable systems
    Anton Izosimov
    Geometric and Functional Analysis, 2022, 32 : 861 - 880
  • [45] Dimers, networks, and cluster integrable systems
    Izosimov, Anton
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2022, 32 (04) : 861 - 880
  • [46] Integrable systems on open chains with quantum supersymmetry
    Links, JR
    Gould, MD
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1996, 10 (25): : 3461 - 3480
  • [47] Integrable impurity spin ladder systems
    Tonel, AP
    Foerster, A
    Guan, XW
    Links, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (02): : 359 - 370
  • [48] Heisenberg-Integrable Spin Systems
    Robin Steinigeweg
    Heinz-Jürgen Schmidt
    Mathematical Physics, Analysis and Geometry, 2009, 12 : 19 - 45
  • [49] Heisenberg-Integrable Spin Systems
    Steinigeweg, Robin
    Schmidt, Heinz-Juergen
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2009, 12 (01) : 19 - 45
  • [50] CRITICAL-BEHAVIOR OF INTEGRABLE MIXED-SPIN CHAINS
    ALADIM, SR
    MARTINS, MJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (12): : L529 - L534