Cluster integrable systems and spin chains

被引:0
|
作者
A. Marshakov
M. Semenyakin
机构
[1] Center for Advanced Studies,
[2] Skoltech,undefined
[3] Faculty of Mathematics,undefined
[4] NRU HSE,undefined
[5] Institute for Theoretical and Experimental Physics,undefined
[6] Theory Department of Lebedev Physics Institute,undefined
关键词
Quantum Groups; Supersymmetric Gauge Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss relation between the cluster integrable systems and spin chains in the context of their correspondence with 5d supersymmetric gauge theories. It is shown that glN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{gl}}_N $$\end{document} XXZ-type spin chain on M sites is isomorphic to a cluster integrable system with N × M rectangular Newton polygon and N × M fundamental domain of a ‘fence net’ bipartite graph. The Casimir functions of the Poisson bracket, labeled by the zig-zag paths on the graph, correspond to the inhomogeneities, on-site Casimirs and twists of the chain, supplemented by total spin. The symmetricity of cluster formulation implies natural spectral duality, relating glN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{gl}}_N $$\end{document} -chain on M sites with the glM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{gl}}_M $$\end{document} -chain on N sites. For these systems we construct explicitly a subgroup of the cluster mapping class group GQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{G}}_{\mathcal{Q}} $$\end{document} and show that it acts by permutations of zig-zags and, as a consequence, by permutations of twists and inhomogeneities. Finally, we derive Hirota bilinear equations, describing dynamics of the tau-functions or A-cluster variables under the action of some generators of GQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{G}}_{\mathcal{Q}} $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] Overlaps and fermionic dualities for integrable super spin chains
    Charlotte Kristjansen
    Dennis Müller
    Konstantin Zarembo
    Journal of High Energy Physics, 2021
  • [32] Long-range deformations for integrable spin chains
    Bargheer, Till
    Beisert, Niklas
    Loebbert, Florian
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (28)
  • [33] Algebraic representation of correlation functions in integrable spin chains
    Boos, H.
    Jimbo, M.
    Miwa, T.
    Smirnov, F.
    Takeyama, Y.
    ANNALES HENRI POINCARE, 2006, 7 (7-8): : 1395 - 1428
  • [34] Algebraic Representation of Correlation Functions in Integrable Spin Chains
    H. Boos
    M. Jimbo
    T. Miwa
    F. Smirnov
    Y. Takeyama
    Annales Henri Poincaré, 2006, 7 : 1395 - 1428
  • [35] Algebraic Construction of Current Operators in Integrable Spin Chains
    Pozsgay, Balazs
    PHYSICAL REVIEW LETTERS, 2020, 125 (07)
  • [36] Bethe/Gauge correspondence for AN spin chains with integrable boundaries
    Wang, Ziwei
    Zhu, Rui-Dong
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (04):
  • [37] SURFACE-ENERGY OF INTEGRABLE QUANTUM SPIN CHAINS
    BATCHELOR, MT
    HAMER, CJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (05): : 761 - 771
  • [38] Energy transport between two integrable spin chains
    Biella, Alberto
    De Luca, Andrea
    Viti, Jacopo
    Rossini, Davide
    Mazza, Leonardo
    Fazio, Rosario
    PHYSICAL REVIEW B, 2016, 93 (20)
  • [39] Conserved charges in the quantum simulation of integrable spin chains
    Maruyoshi, Kazunobu
    Okuda, Takuya
    Pedersen, Juan W.
    Suzuki, Ryo
    Yamazaki, Masahito
    Yoshida, Yutaka
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (16)
  • [40] Integrable crosscap states in gl (N) spin chains
    Gombor, Tamas
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, (10):