PORT-HAMILTONIAN MODELING OF A NONLINEAR TIMOSHENKO BEAM WITH PIEZO ACTUATION

被引:17
|
作者
Voss, Thomas [1 ]
Scherpen, Jacquelien M. A. [2 ]
机构
[1] ASML, NL-5600 HB Eindhoven, Netherlands
[2] Univ Groningen, Fac Math & Nat Sci, Groningen Ctr Syst & Control, ITM, NL-9747 AG Groningen, Netherlands
关键词
port-Hamiltonian systems; piezoelectric material; Timoshenko beam; SYSTEMS;
D O I
10.1137/090774598
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we develop a mathematical model for the dynamics of a nonlinear Timoshenko beam with piezoelectric actuation. This model can then be used to design controllers with the goal of achieving a desired shape of the beam. The control scheme can be used for several applications, e. g., vibration control in structures or shape control for high-precision structures like inflatable space reflectors. The starting point of the control design is modeling for control. We do this in the framework of port-Hamiltonian (pH) modeling, which has favorable properties, such as passivity and a Hamiltonian representing the energy and serving as a Lyapunov function, that can be exploited for controller design. An important property of the pH modeling framework is that it facilitates modeling multiphysics systems or systems which consist of several subsystems, where all parts are modeled separately and then can be interconnected easily. This is possible because any interconnection of finite dimensional pH systems yields again a finite dimensional pH system. Hence, the pH framework is useful for our multidomain modeling purpose.
引用
收藏
页码:493 / 519
页数:27
相关论文
共 50 条
  • [21] Simultaneous stabilization of Port-Hamiltonian systems subject to actuation saturation and input delay
    Liang-Cheng Cai
    [J]. International Journal of Automation and Computing, 2021, 18 : 849 - 854
  • [22] A structure preserving minimal representation of a nonlinear port-Hamiltonian system
    Scherpen, Jacquelien M. A.
    van der Schaft, Arjan J.
    [J]. 47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 4885 - 4890
  • [23] Stabilizing a Flexible Beam on a Cart: A Distributed Port-Hamiltonian Approach
    Ravi Banavar
    Biswadip Dey
    [J]. Journal of Nonlinear Science, 2010, 20 : 131 - 151
  • [24] Stabilizing a Flexible Beam on a Cart: A Distributed Port-Hamiltonian Approach
    Banavar, Ravi
    Dey, Biswadip
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2010, 20 (02) : 131 - 151
  • [25] Dirac and Lagrange Algebraic Constraints in Nonlinear Port-Hamiltonian Systems
    van der Schaft, Arjan
    Maschke, Bernhard
    [J]. VIETNAM JOURNAL OF MATHEMATICS, 2020, 48 (04) : 929 - 939
  • [26] Dirac and Lagrange Algebraic Constraints in Nonlinear Port-Hamiltonian Systems
    Arjan van der Schaft
    Bernhard Maschke
    [J]. Vietnam Journal of Mathematics, 2020, 48 : 929 - 939
  • [27] Learning feedback Nash strategies for nonlinear port-Hamiltonian systems
    Koelsch, Lukas
    Jane Soneira, Pol
    Malan, Albertus Johannes
    Hohmann, Soeren
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2023, 96 (01) : 201 - 213
  • [28] Port-Hamiltonian Modeling and IDA-PBC Control of an IPMC-Actuated Flexible Beam
    Zhou, Weijun
    Wu, Yongxin
    Hu, Haiqiang
    Li, Yanjun
    Wang, Yu
    [J]. ACTUATORS, 2021, 10 (09)
  • [29] Stochastic Port-Hamiltonian Systems
    Francesco Cordoni
    Luca Di Persio
    Riccardo Muradore
    [J]. Journal of Nonlinear Science, 2022, 32
  • [30] A port-Hamiltonian approach to modeling the structural dynamics of complex systems
    Warsewa, Alexander
    Boehm, Michael
    Sawodny, Oliver
    Tarin, Cristina
    [J]. APPLIED MATHEMATICAL MODELLING, 2021, 89 : 1528 - 1546