Dirac and Lagrange Algebraic Constraints in Nonlinear Port-Hamiltonian Systems

被引:12
|
作者
van der Schaft, Arjan [1 ]
Maschke, Bernhard [2 ]
机构
[1] Univ Groningen, Bernoulli Inst Math Comp Sci & AI, Groningen, Netherlands
[2] Univ Claude Bernard Lyon 1, Lyon, France
关键词
Differential-algebraic equations; Nonlinear control; Hamiltonian systems; Dirac structures; Lagrangian submanifolds; REPRESENTATIONS;
D O I
10.1007/s10013-020-00419-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
After recalling the definitions of standard port-Hamiltonian systems and their algebraic constraints, called here Dirac algebraic constraints, an extended class of port-Hamiltonian systems is introduced. This is based on replacing the Hamiltonian function by a general Lagrangian submanifold of the cotangent bundle of the state space manifold, motivated by developments in (Barbero-Linan et al., J. Geom. Mech. 11, 487-510,2019) and extending the linear theory as developed in (van der Schaft and Maschke, Syst. Control Lett. 121, 31-37,2018) and (Beattie et al., Math. Control Signals Syst. 30, 17,2018). The resulting new type of algebraic constraints equations are called Lagrange algebraic constraints. It is shown how Dirac algebraic constraints can be converted into Lagrange algebraic constraints by the introduction of extra state variables, and, conversely, how Lagrange algebraic constraints can be converted into Dirac algebraic constraints by the use of Morse families.
引用
收藏
页码:929 / 939
页数:11
相关论文
共 50 条
  • [1] Dirac and Lagrange Algebraic Constraints in Nonlinear Port-Hamiltonian Systems
    Arjan van der Schaft
    Bernhard Maschke
    [J]. Vietnam Journal of Mathematics, 2020, 48 : 929 - 939
  • [2] Interconnection of port-Hamiltonian systems and composition of Dirac structures
    Cervera, J.
    van der Schaft, A. J.
    Banos, A.
    [J]. AUTOMATICA, 2007, 43 (02) : 212 - 225
  • [3] IDENTIFICATION OF NONLINEAR CIRCUITS AS PORT-HAMILTONIAN SYSTEMS
    Najnudel, Judy
    Mueller, Remy
    Helie, Thomas
    Roze, David
    [J]. 2021 24TH INTERNATIONAL CONFERENCE ON DIGITAL AUDIO EFFECTS (DAFX), 2021, : 1 - 8
  • [4] Dirac Structures for a Class of Port-Hamiltonian Systems in Discrete Time
    Moreschini, Alessio
    Monaco, Salvatore
    Normand-Cyrot, Dorothee
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (03) : 1999 - 2006
  • [5] Control of port-Hamiltonian differential-algebraic systems and applications
    Mehrmann, Volker
    Unger, Benjamin
    [J]. ACTA NUMERICA, 2023, 32 : 395 - 515
  • [6] Passive Nonlinear Impedance Control for Port-Hamiltonian Systems
    Okura, Yuki
    Fujimoto, Kenji
    [J]. 2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 7983 - 7988
  • [7] A port-Hamiltonian formulation of physical switching systems with varying constraints
    Valentin, Claire
    Magos, Miguel
    Maschke, Bernhard
    [J]. AUTOMATICA, 2007, 43 (07) : 1125 - 1133
  • [8] On Dirac structure of infinite-dimensional stochastic port-Hamiltonian systems
    Lamoline, Francois
    Hastir, Anthony
    [J]. EUROPEAN JOURNAL OF CONTROL, 2024, 75
  • [9] Stochastic Port-Hamiltonian Systems
    Francesco Cordoni
    Luca Di Persio
    Riccardo Muradore
    [J]. Journal of Nonlinear Science, 2022, 32
  • [10] Memristive port-Hamiltonian Systems
    Jeltsema, Dimitri
    van der Schaft, Arjan J.
    [J]. MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2010, 16 (02) : 75 - 93