Dirac and Lagrange Algebraic Constraints in Nonlinear Port-Hamiltonian Systems

被引:12
|
作者
van der Schaft, Arjan [1 ]
Maschke, Bernhard [2 ]
机构
[1] Univ Groningen, Bernoulli Inst Math Comp Sci & AI, Groningen, Netherlands
[2] Univ Claude Bernard Lyon 1, Lyon, France
关键词
Differential-algebraic equations; Nonlinear control; Hamiltonian systems; Dirac structures; Lagrangian submanifolds; REPRESENTATIONS;
D O I
10.1007/s10013-020-00419-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
After recalling the definitions of standard port-Hamiltonian systems and their algebraic constraints, called here Dirac algebraic constraints, an extended class of port-Hamiltonian systems is introduced. This is based on replacing the Hamiltonian function by a general Lagrangian submanifold of the cotangent bundle of the state space manifold, motivated by developments in (Barbero-Linan et al., J. Geom. Mech. 11, 487-510,2019) and extending the linear theory as developed in (van der Schaft and Maschke, Syst. Control Lett. 121, 31-37,2018) and (Beattie et al., Math. Control Signals Syst. 30, 17,2018). The resulting new type of algebraic constraints equations are called Lagrange algebraic constraints. It is shown how Dirac algebraic constraints can be converted into Lagrange algebraic constraints by the introduction of extra state variables, and, conversely, how Lagrange algebraic constraints can be converted into Dirac algebraic constraints by the use of Morse families.
引用
收藏
页码:929 / 939
页数:11
相关论文
共 50 条
  • [31] Reinforcement Learning for Port-Hamiltonian Systems
    Sprangers, Olivier
    Babuska, Robert
    Nageshrao, Subramanya P.
    Lopes, Gabriel A. D.
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (05) : 1003 - 1013
  • [32] Learnability of Linear Port-Hamiltonian Systems
    Ortega, Juan-Pablo
    Yin, Daiying
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 56
  • [33] A STRUCTURAL OBSERVATION ON PORT-HAMILTONIAN SYSTEMS
    Picard, Rainer H.
    Trostorff, Sascha
    Watson, Bruce
    Waurick, Marcus
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (02) : 511 - 535
  • [34] On Energy Conversion in Port-Hamiltonian Systems
    van der Schaft, Arjan
    Jeltsema, Dimitri
    [J]. 2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 2421 - 2427
  • [35] Discrete stochastic port-Hamiltonian systems
    Cordoni, Francesco Giuseppe
    Di Persio, Luca
    Muradore, Riccardo
    [J]. AUTOMATICA, 2022, 137
  • [36] Generalized port-Hamiltonian DAE systems
    van der Schaft, Arjan
    Maschke, Bernhard
    [J]. SYSTEMS & CONTROL LETTERS, 2018, 121 : 31 - 37
  • [37] Notch filters for port-Hamiltonian systems
    Dirksz, D. A.
    Scherpen, J. M. A.
    van der Schaft, A. J.
    Steinbuch, M.
    [J]. 2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 238 - 243
  • [38] Decomposition of Linear Port-Hamiltonian Systems
    Hoeffner, K.
    Guay, M.
    [J]. 2011 AMERICAN CONTROL CONFERENCE, 2011, : 3686 - 3691
  • [39] Learning port-Hamiltonian Systems—Algorithms
    V. Salnikov
    A. Falaize
    D. Lozienko
    [J]. Computational Mathematics and Mathematical Physics, 2023, 63 : 126 - 134
  • [40] Structure-preserving model reduction for nonlinear port-Hamiltonian systems
    Beattie, Christopher
    Gugercin, Serkan
    [J]. 2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 6564 - 6569