SCALAR PARABOLIC PDES AND BRAIDS

被引:0
|
作者
Ghrist, R. W. [1 ,2 ]
Vandervorst, R. C. [3 ]
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
[3] Vrije Univ Amsterdam, Dept Math, NL-1081 HV Amsterdam, Netherlands
关键词
HETEROCLINIC ORBITS; ROTATING WAVES; EQUATIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The comparison principle for scalar second order parabolic PDEs on functions u(t,x) admits a topological interpretation: pairs of solutions, u(1)(t,.) and u(2)(t,.), evolve so as to not increase the intersection number of their graphs. We generalize to the case of multiple solutions {u(alpha)(t,.)}(alpha=1)(n). By lifting the graphs to Legendrian braids, we give a global version of the comparison principle: the curves u(alpha)(t, .) evolve so as to (weakly) decrease the algebraic length of the braid. We define a Morse-type theory on Legendrian braids which we demonstrate is useful for detecting stationary and periodic solutions to scalar parabolic PDEs. This is done via discretization to a finite-dimensional system and a suitable Conley index for discrete braids. The result is a toolbox of purely topological methods for finding invariant sets of scalar parabolic PDEs. We give several examples of spatially inhomogeneous systems possessing infinite collections of intricate stationary and time-periodic solutions.
引用
收藏
页码:2755 / 2788
页数:34
相关论文
共 50 条
  • [1] Regularity Theory for Parabolic PDEs
    Schneider, Cornelia
    BEYOND SOBOLEV AND BESOV: REGULARITY OF SOLUTIONS OF PDES AND THEIR TRACES IN FUNCTION SPACES, 2021, 2291 : 175 - 240
  • [2] Renormalisation of parabolic stochastic PDEs
    Martin Hairer
    Japanese Journal of Mathematics, 2018, 13 : 187 - 233
  • [3] Renormalisation of parabolic stochastic PDEs
    Hairer, Martin
    JAPANESE JOURNAL OF MATHEMATICS, 2018, 13 (02): : 187 - 233
  • [4] Completion of overdetermined parabolic PDEs
    Krupchyk, Katsiaryna
    Tuomela, Jukka
    JOURNAL OF SYMBOLIC COMPUTATION, 2008, 43 (03) : 153 - 167
  • [5] CONTROLLING LINEAR AND SEMILINEAR SYSTEMS FORMED BY ONE ELLIPTIC AND TWO PARABOLIC PDES WITH ONE SCALAR CONTROL
    Fernandez-Cara, E.
    Limaco, J.
    de Menezes, S. B.
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2016, 22 (04) : 1017 - 1039
  • [6] Adaptive Observer for a Class of Parabolic PDEs
    Ahmed-Ali, T.
    Giri, F.
    Krstic, M.
    Lamnabhi-Lagarrigue, F.
    Burlion, L.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (10) : 3083 - 3090
  • [7] SOLENOIDAL LIPSCHITZ TRUNCATION FOR PARABOLIC PDEs
    Breit, D.
    Diening, L.
    Schwarzacher, S.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (14): : 2671 - 2700
  • [8] Besov regularity of inhomogeneous parabolic PDEs
    Schneider, Cornelia
    Szemenyei, Flora Orsolya
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 4 (05):
  • [9] Validated integration of semilinear parabolic PDEs
    van den Berg, Jan Bouwe
    Breden, Maxime
    Sheombarsing, Ray
    NUMERISCHE MATHEMATIK, 2024, 156 (04) : 1219 - 1287
  • [10] Rate of convergence in homogenization of parabolic PDEs
    Roman, LJ
    Zhang, XS
    Zheng, W
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2003, 6 (02) : 113 - 124