SCALAR PARABOLIC PDES AND BRAIDS

被引:0
|
作者
Ghrist, R. W. [1 ,2 ]
Vandervorst, R. C. [3 ]
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
[3] Vrije Univ Amsterdam, Dept Math, NL-1081 HV Amsterdam, Netherlands
关键词
HETEROCLINIC ORBITS; ROTATING WAVES; EQUATIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The comparison principle for scalar second order parabolic PDEs on functions u(t,x) admits a topological interpretation: pairs of solutions, u(1)(t,.) and u(2)(t,.), evolve so as to not increase the intersection number of their graphs. We generalize to the case of multiple solutions {u(alpha)(t,.)}(alpha=1)(n). By lifting the graphs to Legendrian braids, we give a global version of the comparison principle: the curves u(alpha)(t, .) evolve so as to (weakly) decrease the algebraic length of the braid. We define a Morse-type theory on Legendrian braids which we demonstrate is useful for detecting stationary and periodic solutions to scalar parabolic PDEs. This is done via discretization to a finite-dimensional system and a suitable Conley index for discrete braids. The result is a toolbox of purely topological methods for finding invariant sets of scalar parabolic PDEs. We give several examples of spatially inhomogeneous systems possessing infinite collections of intricate stationary and time-periodic solutions.
引用
收藏
页码:2755 / 2788
页数:34
相关论文
共 50 条
  • [21] Besov regularity of parabolic and hyperbolic PDEs
    Dahlke, Stephan
    Schneider, Cornelia
    ANALYSIS AND APPLICATIONS, 2019, 17 (02) : 235 - 291
  • [22] Numerical methods for stochastic parabolic PDEs
    Shardlow, T
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1999, 20 (1-2) : 121 - 145
  • [23] Boundary predictive control of parabolic PDEs
    Dubljevic, Stevan
    Christofides, Panagiotis D.
    2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 49 - +
  • [24] An algorithm for probabilistic solution of parabolic PDEs
    Haneche, M.
    Djaballah, K.
    Khaldi, K.
    SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS, 2021, 40 (04): : 441 - 465
  • [25] Multirate Numerical Integration for Parabolic PDEs
    Savcenco, Valeriu
    Savcenco, Eugeniu
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 470 - +
  • [26] Rate of Convergence in Homogenization of Parabolic PDEs
    Luis J. Roman
    Xinsheng Zhang
    Weian Zheng
    Mathematical Physics, Analysis and Geometry, 2003, 6 : 113 - 124
  • [27] On design of interval observers for parabolic PDEs
    Kharkovskaia, Tatiana
    Efimov, Denis
    Fridman, Emilia
    Polyakov, Andrey
    Richard, Jean-Pierre
    IFAC PAPERSONLINE, 2017, 50 (01): : 4045 - 4050
  • [28] Regularity of hyperbolic PDEs governing backstepping gain kernels for parabolic PDEs
    Smyshlyaev, A
    Krstic, M
    PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 2634 - 2639
  • [29] Non-autonomous scalar linear-dissipative and purely dissipative parabolic PDEs over a compact base flow
    Obaya, Rafael
    Sanz, Ana M.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 285 : 714 - 750
  • [30] Time discretization in the solution of parabolic PDEs with ANNs
    Calabro, Francesco
    Cuomo, Salvatore
    di Serafino, Daniela
    Izzo, Giuseppe
    Messina, Eleonora
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 458