SCALAR PARABOLIC PDES AND BRAIDS

被引:0
|
作者
Ghrist, R. W. [1 ,2 ]
Vandervorst, R. C. [3 ]
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
[3] Vrije Univ Amsterdam, Dept Math, NL-1081 HV Amsterdam, Netherlands
关键词
HETEROCLINIC ORBITS; ROTATING WAVES; EQUATIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The comparison principle for scalar second order parabolic PDEs on functions u(t,x) admits a topological interpretation: pairs of solutions, u(1)(t,.) and u(2)(t,.), evolve so as to not increase the intersection number of their graphs. We generalize to the case of multiple solutions {u(alpha)(t,.)}(alpha=1)(n). By lifting the graphs to Legendrian braids, we give a global version of the comparison principle: the curves u(alpha)(t, .) evolve so as to (weakly) decrease the algebraic length of the braid. We define a Morse-type theory on Legendrian braids which we demonstrate is useful for detecting stationary and periodic solutions to scalar parabolic PDEs. This is done via discretization to a finite-dimensional system and a suitable Conley index for discrete braids. The result is a toolbox of purely topological methods for finding invariant sets of scalar parabolic PDEs. We give several examples of spatially inhomogeneous systems possessing infinite collections of intricate stationary and time-periodic solutions.
引用
收藏
页码:2755 / 2788
页数:34
相关论文
共 50 条
  • [41] Error estimates of a FEM with lumping for parabolic PDEs
    Vanselow, R
    COMPUTING, 2002, 68 (02) : 131 - 141
  • [42] On the multifractal local behavior of parabolic stochastic PDEs
    Huang, Jingyu
    Khoshnevisan, Davar
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2017, 22
  • [43] Tracking Control for Parabolic PDEs with Varying Parameters
    Jadachowski, Lukas
    Meurer, Thomas
    Kugi, Andreas
    AT-AUTOMATISIERUNGSTECHNIK, 2010, 58 (03) : 128 - 138
  • [44] A Macroscopic Multifractal Analysis of Parabolic Stochastic PDEs
    Khoshnevisan, Davar
    Kim, Kunwoo
    Xiao, Yimin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 360 (01) : 307 - 346
  • [45] Predictive output feedback control of parabolic PDEs
    Dubljevic, Stevan
    Christofides, Panagiotis D.
    2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 1155 - +
  • [46] Parabolic PDEs on low-dimensional structures
    Chomienia, Lukasz
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 534 (02)
  • [47] External optimal control of fractional parabolic PDEs
    Antil, Harbir
    Verma, Deepanshu
    Warma, Mahamadi
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26
  • [48] On some linear parabolic PDEs on moving hypersurfaces
    Alphonse, Amal
    Elliott, Charles M.
    Stinner, Bjoern
    INTERFACES AND FREE BOUNDARIES, 2015, 17 (02) : 157 - 187
  • [49] Linear parabolic stochastic PDEs and Wiener chaos
    Mikulevicius, R
    Rozovskii, B
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (02) : 452 - 480