Regularity Theory for Parabolic PDEs

被引:0
|
作者
Schneider, Cornelia [1 ]
机构
[1] Univ Erlangen Nurnberg, Dept Math, Erlangen, Germany
关键词
D O I
10.1007/978-3-030-75139-5_5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:175 / 240
页数:66
相关论文
共 50 条
  • [1] Besov regularity of inhomogeneous parabolic PDEs
    Schneider, Cornelia
    Szemenyei, Flora Orsolya
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 4 (05):
  • [2] Besov regularity of parabolic and hyperbolic PDEs
    Dahlke, Stephan
    Schneider, Cornelia
    ANALYSIS AND APPLICATIONS, 2019, 17 (02) : 235 - 291
  • [3] Regularity of hyperbolic PDEs governing backstepping gain kernels for parabolic PDEs
    Smyshlyaev, A
    Krstic, M
    PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 2634 - 2639
  • [4] Regularity Theory for Hyperbolic PDEs
    Schneider, Cornelia
    BEYOND SOBOLEV AND BESOV: REGULARITY OF SOLUTIONS OF PDES AND THEIR TRACES IN FUNCTION SPACES, 2021, 2291 : 241 - 244
  • [5] Regularity Theory for Elliptic PDEs
    Schneider, Cornelia
    BEYOND SOBOLEV AND BESOV: REGULARITY OF SOLUTIONS OF PDES AND THEIR TRACES IN FUNCTION SPACES, 2021, 2291 : 145 - 174
  • [6] Regularity Theory for Second Order Integro-PDEs
    Chenchen Mou
    Yuming Paul Zhang
    Potential Analysis, 2021, 54 : 387 - 407
  • [7] Regularity Theory for Second Order Integro-PDEs
    Mou, Chenchen
    Zhang, Yuming Paul
    POTENTIAL ANALYSIS, 2021, 54 (02) : 387 - 407
  • [8] Lq(Lp)-theory of parabolic pdes with variable coefficients
    Kim, Kyeong-Hun
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (01) : 169 - 190
  • [9] A COUNTEREXAMPLE IN REGULARITY THEORY FOR PARABOLIC-SYSTEMS
    STRUWE, M
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1984, 34 (02) : 183 - 188
  • [10] The regularity theory for the parabolic double obstacle problem
    Ki-Ahm Lee
    Jinwan Park
    Mathematische Annalen, 2021, 381 : 685 - 728