Convergence of finite element A-φ method for solving time-dependent Maxwell's equations

被引:5
|
作者
Ma, Changfeng
机构
[1] Fujian Normal Univ, Coll Math & Comp Sci, Fuzhou 350007, Peoples R China
[2] Guilin Univ Elect Technol, Dept Computat Sci & Math, Guangxi 541004, Peoples R China
基金
中国博士后科学基金;
关键词
time-dependent Maxwell's equations; finite element A-phi method; ungauged potential; error analysis;
D O I
10.1016/j.amc.2005.10.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper provides a convergence analysis of finite element A-phi method for the time-dependent Maxwell's equations based on ungauged potentials. Error estimates in finite time Tare given. And it is verified that provided the time-stepsize tau is sufficiently small, the proposed algorithm yields for finite time T an error of O(h + tau) in the L-2-norm for the electric field E and the magnetic field H, where h is the mesh size. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:621 / 631
页数:11
相关论文
共 50 条
  • [21] Solving the time-dependent Maxwell equations by unconditionally stable algorithms
    Kole, JS
    Figge, MT
    De Raedt, H
    [J]. COMPUTER SIMULATION STUDIES IN CONDENSED-MATTER PHYSICS XV, 2003, 90 : 205 - 210
  • [22] Finite element convergence for the Darwin model to Maxwell's equations
    Ciarlet, P
    Zou, J
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1997, 31 (02): : 213 - 249
  • [23] A postprocessing finite volume element method for time-dependent Stokes equations
    Yang, Min
    Song, Huailing
    [J]. APPLIED NUMERICAL MATHEMATICS, 2009, 59 (08) : 1922 - 1932
  • [24] A vector finite element time-domain method for solving Maxwell's equations on unstructured hexahedral grids
    Rodrigue, G
    White, D
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 23 (03): : 683 - 706
  • [25] Analysis of finite element approximation for time-dependent Maxwell problems
    Zhao, J
    [J]. MATHEMATICS OF COMPUTATION, 2004, 73 (247) : 1089 - 1105
  • [26] Chebyshev method to solve the time-dependent Maxwell equations
    De Raedt, H
    Michielsen, K
    Kole, JS
    Figge, MT
    [J]. COMPUTER SIMULATION STUDIES IN CONDENSED-MATTER PHYSICS XV, 2003, 90 : 211 - 215
  • [27] THE WEAK GALERKIN FINITE ELEMENT METHOD FOR SOLVING THE TIME-DEPENDENT STOKES FLOW
    Wang, Xiuli
    Liu, Yuanyuan
    Zhai, Qilong
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2020, 17 (05) : 732 - 745
  • [28] Continuous interior penalty finite element method for the time-dependent Navier–Stokes equations: space discretization and convergence
    Erik Burman
    Miguel A. Fernández
    [J]. Numerische Mathematik, 2007, 107 : 39 - 77
  • [29] Asymptotic expansion analysis of nonconforming mixed finite element methods for time-dependent Maxwell's equations in Debye Medium
    Yao, Changhui
    Jia, Shanghui
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 229 : 34 - 40
  • [30] Convergence analysis of adaptive edge finite element method for variable coefficient time-harmonic Maxwell's equations
    He, Bin
    Yang, Wei
    Wang, Hao
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 376